Реферат: Достоверность передачи сообщений и надежность систем
Мешающие факторы, существующие при передаче сигналов ТМ, могут вести к следующим искажениям исходного импульса (рис. 1, а ):искажения фронтов импульсов (рис.1, б ), смещение, изменение крутизны и тому подобные краевые искажения (рис.1, в); изменения длительности импульсов и пауз (рис. 1, г); дробление одного импульса на части без изменения (рис. 1, д )и с изменением (рис. 1, е )параметров или появление дополнительных импульсов в паузе ( рис. 1, ж ).
Указанные внешние искажения импульсов являются чаще всего результатом наложения внешних помех или определяются фазочастотными характеристиками канала передачи телемеханических сигналов. Фазочастотные искажения вызываются неодинаковыми условиями прохождения гармонических составляющих по каналу из-за наличия в нем большого числа сосредоточенных и распределенных реактивных сопротивлений, которые существенно зависят от частоты.
Искажения сигналов по фазе и частоте могут оказаться линейными, т.е. без дополнительных частотных составляющих в спектре принимаемого сигнала, и нелинейными, что зависит от характера сопротивлений в канале передачи. При правильном проектировании системы телемеханики влияние фазочастотных характеристик канала на принимаемые сигналы может быть сведено к минимуму.
Главной причиной искажения телемеханических сигналов являются внешние помехи: чем меньше их влияние на приемные устройства, тем выше достоверность передачи. Но поскольку разработчики систем телемеханики не могут влиять на уровень внешних помех, они повышают помехоустойчивость систем.
Если в канале связи кроме напряжения передатчика телемеханических сигналов существуют какие-либо другие напряжения, то все они в той или иной мере действуют на вход приемника и, следовательно, являются помехами. Реакция приемника на сигнал с помехами зависит от характера их взаимодействия. Различают два вида такого взаимодействия:
амплитуды сигнала S(t )и помех (t ) складываются, т. е. x (t) = = S(t )+ (t ). В этом случае помехи являются аддитивными ;
результирующая амплитуда равна произведению амплитуд сигнала и помехи, т.е. x (t) = S(t ) (t ) . Помехи являются мультипликативными . Они могут вызываться изменениями коэффициентов усиления и параметров канала связи.
Для систем телемеханики характерными являются аддитивные помехи, которые по характеру действия во времени на вход приемника принято разделять на импульсные и флуктуационные.
Если переходные процессы в приемнике от импульса помехи успевают закончиться до поступления следующего импульса помех, считается, что на входе приемника действуют импульсные помехи (рис.2, а ). Если на входе приемника непрерывно действует напряжение помех со случайной амплитудой, помехи называют флуктуационными или гладкими (рис.2, б). Характерной особенностью гладких помех является отсутствие амплитуды, более чем в 3 раза превышающей среднюю.
Фильтрацией сигнала на входе приемника, т.е. изменением полосы пропускания, можно импульсные помехи линии связи превратить во флуктуационные, так как время установления переходных процессов обратно пропорционально полосе пропускания.
Аддитивные помехи в канале могут быть внутренними или внешними. Внутренние помехи являются принципиально неустранимыми, так как представляют собой шум, возникающий из-за разных физических явлений (тепловой, гальванический эффекты и т.п.) в электрических цепях канала.
Рис.2. Импульсные и флуктуационные помехи
Обычно уровень шумов намного ниже возможных уровней телемеханических сигналов и не оказывает заметного влияния на работу систем. Внешние аддитивные помехи возникают в результате коммутационных процессов в электрических цепях, имеющих электромагнитную связь с каналом передачи сигналов, а также от грозовых разрядов в атмосфере.
Для аналитического описания аддитивных помех широко используется теория стационарных случайных процессов, т.е. функций, вероятностные характеристики которых не зависят от времени. Флуктуационная помеха на входе приемника представляет собой непрерывный случайный сигнал U (t ). Для оценки мгновенных значений помехи из интегральной характеристики распределения плотности вероятности (рис.3) определяется вероятность появления того или иного напряжения, т.е. плотность вероятности того, что мгновенное значение нап-ряжения флуктуационной помехи Un лежит в пределах от U до U + U .
Рис.3 Распределение плотности вероятности помех
Плотность вероятности напряжения флуктуационных помех подчиняется закону нормального распределения (распределения Гаусса)
— среднее квадратичное значение переменной составляющей напряжения на интервале Т ; а — среднее значение (постоянная составляющая) случайного напряжения (обычно для флуктуационных помех а = 0).