Реферат: Двигатели стирлинга. Области применения

в. Способ соединения поршней

Способ соединения поршней является дополнительным классификационным признаком. Этот признак подразделяется на более детальные признаки, примеры которых даны ниже. В двигателях Стирлинга применяются три основные формы соединения поршней:

1) жесткое соединение;

2) соединение через газ;

3) соединение через жидкость.

В двигателях с жестким соединением используются недеформированные механические звенья, соединяющие движущиеся возвратно-поступательно элементы, которые определяют последовательность изменений объемов в цилиндрах, а также образуют механизм для отвода энергии от двигателя. Типичные механизмы, которые относятся к жестким соединениям, следующие:

а) кривошипно-шатунный механизм;

б) ромбический привод;

в) косая шайба;

г) кривошипно-кулисный;

д) кривошипно-балансирный механизм;

е) механизм Росса.

Изобретение двигателя Била и харуэллской машины потребовало введения в классификацию соединения через газ. В этих двигателях взаимное положение поршней определяется газовой динамикой, а не механическими устройствами. Имеется много разновидностей соединения этого типа, например:

а) свободнопоршневой двигатель;

б) двигатель со свободным вытеснителем;

в) двигатель со свободным цилиндром.

Последний тип соединения поршней – соединение через жидкость. Необходимо, однако, подчеркнуть, что использование в двигателе Стирлинга жидкого рабочего тела не обязательно означает, что поршни соединяются через жидкость. Например, в двигателе Стирлинга-Мелоуна поршни соединены жестким механизмом. В соединении через жидкость поршни действительно должны соединяться через жидкость. В настоящее время только двигатели "«Флюидайн» попадают в эту категорию. Имеются, по крайней мере три способа, которыми осуществляется соединение через жидкость:

а) с помощью реактивной струи;

б) с помощью качающегося стержня;

в) с помощью разности давлений.

Три основных классификационных признака можно также использовать для точной классификации гибридных двигателей, в которых, например, рабочий поршень жестко соединен с выходным валом, однако рабочий поршень и вытеснитель соединены друг с другом через газ. Тем не менее новые формы двигателей могут потребовать дальнейшего расширения предлагаемой классификации. Чтобы проиллюстрировать применение предлагаемой классификационной схемы, втаблице 1 приведена классификация по этой схеме хорошо известных двигателей Стирлинга.

Такая система может показаться несколько усложненной, однако простая система оказалась недостаточной для охвата всего разнообразия форм двигателей. В будущем могут быть подобраны подходящие условные обозначения, с помощью которых станет возможным создать методику стенографической классификации. Предлагаемая классификационная схема в полном объеме представлена на схеме 5.

Двигатель Описание в соответствии с классификацией
Фирмы "Филипс" с ромбическим приводом Простого действия, однофазный, нерезонансный, типа бета, с жёстким соединением поршней
Р-40 фирмы "Юнайтед Стирлинг" Двойного действия, однофазный, нерезонансный, типа альфа, с жёстким соединением поршней
"Мокрый" "Флюидайн" с реактивной струёй Простого действия, многофазный, резонансный, типа альфа, с соеди- нением поршней через жидкость
Свободнопоршневой Била Простого действия, однофазный, резонансный, типа бета, с соединением поршней через газ
Хенричи Простого действия, однофазный, нерезонансный, типа гамма, с жёстким соединением поршней

Таблица 1. Классификация двигателя Стирлинга.

Эта схема не только позволит классифицировать и идентифицировать существующие двигатели, но и окажется пригодной для качественной оценки различных форм двигателей, которые могут быть созданы в будущем.


3. Схема работы двигателя Стирлинга

Перечислим основные особенности работы двигателя:

1. В двигателе Стирлинга происходит преобразование тепловой энергии в механическую посредством сжатия постоянного количества рабочего тела при низкой температуре и последующего (после периода нагрева) его расширения при высокой температуре. Поскольку работа, затрачиваемая поршнем на сжатие рабочего тела, меньше работы, которую поршень совершает при расширении рабочего тела, двигатель вырабатывает полезную механическую энергию.

2. В принципе при наличии регенерации необходимо только подводить тепло, чтобы не допускать охлаждения рабочего тела при его расширении, и отводить тепло, выделяющееся при его сжатии.

3. Необходимое изменение рабочего тела обеспечивается наличием разделенных холодной и горячей полостей, по соединительным каналам между которыми под действием поршней перемещается рабочее тело.

4. Изменения объема в этих двух полостях должны не совпадать по фазе, а получающиеся в результате циклические изменения суммарного объема в свою очередь не должны совпадать по фазе с циклическим изменением давления. Это - условие получения механической энергии на валу двигателя.

Таким образом, принцип Стирлинга – это попеременный нагрев и охлаждение заключенного в изолированном пространстве рабочего тела.

Известно, что Стирлинг использовал периодическое изменение температуры газа, применив вытеснительный поршень (в дальнейшем называемый вытеснителем). Вытеснитель заставляет перемещаться газ в одну из двух полостей цилиндра, одна из которых находится при постоянно низкой, а другая при постоянно высокой температуре. При движении вытеснителя вверх газ по каналам нагревателя и холодильника перемещается из горячей полости в холодную. При движении вытеснителя вниз газ возвращается тем же путем в горячую полость. В первом случае газ должен отдавать большое количество тепла холодильнику. Во втором - получать от нагревателя равное количество тепла. Регенератор, предназначенный для предотвращения потерь тепла, располагается между нагревателем и холодильником. Он представляет собой некую полость, заполненную пористым материалом, которому горячий газ до поступления в холодильник отдает тепло. Когда же газ течет обратно, регенератор возвращает ему запасенное тепло до того, как газ поступает в нагреватель.

К-во Просмотров: 387
Бесплатно скачать Реферат: Двигатели стирлинга. Области применения