Реферат: Двойное лучепреломление электромагнитных волн

Естественный свет можно преобразовать в плоско поляризованный, используя так называемые поляризаторы, пропускающие колебания только определенного направления (например, пропускающие колебания, параллельные главной плоскости поляризатора, и полностью задерживающие колебания, перпендикулярные этой плоскости). В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора , например кристаллы. Из природных кристаллов, давно используемых в качестве поляризаторов, следует отметить турмалин. Турмалин сильно поглощает световые лучи, в которых электрический вектор перпендикулярен к оптической оси. Если же электрический вектор параллелен оси, то такие лучи проходят через турмалин почти без поглощения. Поэтому естественный свет, пройдя через пластинку турмалина, наполовину поглощается и становится линейно поляризованным с электрическим вектором, ориентированным параллельно оптической оси турмалина.

Таким же свойством обладают поляроиды, более удобные в обращении. Они представляют собой искусственно приготовленные коллоидные пленки, служащие для получения поляризованного света. Поляроид, подобно турмалину, действует, как один кристалл и поглощает световые колебания, электрический вектор которых перпендикулярен к оптической оси.

Явление поляризации света имеет место и при отражении или преломлении света на границе двух изотропных диэлектриков. Этот способ поляризации был открыт Малюсом, который случайно заметил, что при поворачивании кристалла вокруг луча, отраженного от стекла, интенсивность света периодически возрастает и уменьшается, т.е. отражение от стекла действует на свет подобно прохождению через турмалин. Правда, при этом не происходило полного погасания света при некоторых определенных положениях кристалла, а наблюдалось лишь его усиление и ослабление.

Существуют и другие способы получения поляризованного света.

Итак, всякий прибор, служащий для получения поляризованного света, называется поляризатором. Тот же прибор, применяемый для исследования поляризации света, называется анализатором.

Допустим, что два кристалла турмалина или два поляроида поставлены друг за другом, так что их оси и образуют между собой некоторый угол (рис. 5).

Первый поляроид пропустит свет, электрический вектор которого параллелен оси . Обозначим через интенсивность этого света. Разложим на вектор , параллельный оси второго поляризатора, и вектор , перпендикулярный к ней (). Составляющая будет задержана вторым поляроидом. Через оба поляроида пройдет свет с электрическим вектором , длина которого равна . Отношение интенсивностей пропорционально отношению квадратов амплитуд:

и, следовательно

Это соотношение имеет название закон Малюса :

Èíòåíñèâíîñòü ñâåòà, ïðîøåäøåãî ÷åðåç àíàëèçàòîð , ðàâíà èíòåíñèâíîñòè ñâåòà, ïðîøåäøåãî ÷åðåç ïîëÿðèçàòîð , óìíîæåííîé íà êâàäðàò êîñèíóñà óãëà ìåæäó àíàëèçàòîðîì è ïîëÿðèçàòîðîì.

Закон был сформулирован Малюсом в 1810 году и подтвержден тщательными фотометрическими измерениями Араго.

Двойное лучепреломление.

1. Явление двойного лучепреломления.

Фундаментальным свойством световых лучей при их прохождении в кристаллах является двойное лучепреломление, открытое в 1670 году Бартолином и подробно исследованное Гюйгенсом, опубликовавшим в 1690 году свой знаменитый “Трактат о свете, в котором изложены причины того, что происходит при отражении и преломлении и, в частности, при необыкновенном преломлении в кристаллах из Исландии.” Явление двойного лучепреломления объясняется особенностями распространения света в анизотропных средах.

Если на кристалл исландского шпата направить узкий пучок света, то из кристалла выйдут два пространственно разделенных луча, параллельных друг другу и падающему лучу.

рис. 6

Даже в том случае, когда первичный пучок света падает на кристалл нормально, преломленный пучок разделяется на два, причем один из них является продолжением первичного, а второй отклоняется. Со времен Гюйгенса первый луч получил название обыкновенного (), а второй -необыкновенного ()(рис. 6).

Направление в кристалле, по которому луч света распространяется не испытывая двойного лучепреломления, называется оптической осью кристалла. А плоскость, проходящая через направление луча света и оптическую ось кристалла, называется главной плоскостью (главным сечением) кристалла. Анализ поляризации света показывает, что на выходе из кристалла лучи оказываются линейно поляризованными во взаимно перпендикулярных плоскостях.

Раздвоение луча в кристалле всегда происходит в главной плоскости. Так как при вращении кристалла вокруг падающего луча главная плоскость поворачивается в пространстве, то одновременно поворачивается и необыкновенный луч. Рассмотрим некоторые наиболее простые случаи распространения света в кристалле.

рис. 7

1. Если луч параллелен оптической оси (рис. 7), то положение главной плоскости не определено. В частности, плоскость рисунка является главной плоскостью, но такой же является, например, и перпендикулярная ей плоскость. Условия распространения лучей с любой поляризацией одинаковы, и они не раздваиваются.

2. Если луч идет перпендикулярно оптической оси (рис. 7), то электрический вектор, лежащий в главной плоскости, параллелен оси. Электрический вектор, перпендикулярный оси, лежит при этом в плоскости, нормальной к главной, так что условия распространения для этих составляющих электрического поля световой волны неодинаковы: лучи не раздваиваются, но имеют различную скорость распространения.

3. Если луч идет под произвольным углом к оптической оси, то условия распространения указанных выше составляющих также неодинаковы: лучи распространяются по различным направлениям и с различными скоростями (рис. 7).

Луч, имеющий электрический вектор, перпендикулярный оптической оси, во всех этих случаях находится в одинаковых условиях, так что законы его распространения не должны зависеть от направления распространения; это и есть обыкновенный луч, подчиняющийся обычным законам преломления.

Второй же, необыкновенный луч во всех трех случаях находится в разных условиях (оптические свойства кристалла неизотропны), а потому и условия распространения могут усложняться ().

2. Волновые поверхности.

Неодинаковое преломление обыкновенного и необыкновенного лучей указывает на различие для них показателей преломления. Очевидно, что при любом направлении обыкновенного луча колебания светового вектора перпендикулярны оптической оси кристалла, поэтому обыкновенный луч распространяется по всем направлениям с одинаковой скоростью и, следовательно, показатель преломления для него есть величина постоянная. Для необыкновенного же луча угол между направлением колебаний светового вектора и оптической осью отличен от прямого и зависит от направления луча, поэтому необыкновенные лучи распространяются по различным направлениям с различными скоростями. Следовательно, показатель преломления необыкновенного луча является переменной величиной, зависящей от направления луча.

Таким образом, обыкновенные лучи распространяются в кристалле по всем направлениям с одинаковой скоростью , а необыкновенные- с разной скоростью (в зависимости от угла между вектором и оптической осью). Для луча, распространяющегося вдоль оптической оси, , , т.е. вдоль оптической оси существует только одна скорость распространения света. Различие в и для всех направлений, кроме направления оптической оси, и обуславливает явление двойного лучепреломления в одноосных кристаллах..

Допустим, что в точке внутри одноосного кристалла находится точечный источник света.

На рис. 8 показано распространение обыкновенного и необыкновенного лучей в кристалле (главная плоскость совпадает с плоскостью чертежа, -направление оптической оси). Волновой поверхностью обыкновенного луча (от распространяется с) является сфера, необыкновенного луча ()-эллипсоид вращения. Наибольшее расхождение волновых поверхностей обыкновенного и необыкновенного лучей наблюдается в направлении, перпендикулярном оптической оси. Эллипсоид и сфера касаются друг друга в точках их пересечения с оптической осью . Если (), то эллипсоид необыкновенного луча вписан в сферу обыкновенного луча (эллипсоид скоростей вытянут относительно оптической оси) и одноосный кристалл называется положительным (рис. 8,а). Если (), то эллипсоид описан вокруг сферы (эллипсоид скоростей растянут в направлении, перпендикулярном оптической оси) и одноосный кристалл называется отрицательным (рис. 8,б).

3. Построение Гюйгенса.

Большой заслугой Гюйгенса является создание стройной теории прохождения световой волны через кристалл, объясняющей возникновение двойного лучепреломления. Примененный им метод прост и нагляден, а как способ определения направления обыкновенного и необыкновенного лучей сохранил свое значение и по сей день.

В основе объяснения двойного лучепреломления лежит принцип Гюйгенса, в котором постулируется, что каждая точка, до которой доходит световое возбуждение, может рассматриваться как центр соответствующих вторичных волн. Для определения волнового фронта распространяющейся волны в последующие моменты времени следует построить огибающую этих вторичных волн.

В качестве примера построения обыкновенного и необыкновенного лучей рассмотрим преломление плоской волны на границе анизотропной среды, например положительной (рис. 9). Оптическая ось положительного кристалла лежит в плоскости падения под углом к преломляющей грани кристалла. Параллельный пучок света падает под углом к поверхности кристалла.

рис. 9

За время, в течение которого правый край фронта достигает точки на поверхности кристалла, вокруг каждой из точек на поверхности кристалла между и возникают две волновые поверхности - сферическая и эллипсоидальная. Эти две поверхности соприкасаются друг с другом вдоль оптической оси. Из-за положительности кристалла эллипсоид будет вписан в сферу. Для нахождения фронтов обыкновенной и необыкновенной волн проводим касательные и соответственно к сфере и эллипсоиду. Линии, соединяющие точку с точками касания сферической и эллипсоидальной поверхностей с касательными и , дают соответственно необыкновенный и обыкновенный лучи. Так как главное сечение кристалла в данном случае совпадает с плоскостью рисунка, то электрический вектор колеблется перпендикулярно этой плоскости, а электрический вектор необыкновенного луча колеблется в плоскости рисунка.

К-во Просмотров: 491
Бесплатно скачать Реферат: Двойное лучепреломление электромагнитных волн