Реферат: Дзеркала для адаптивних оптичних систем
Вступ
Адаптивне дзеркало — це виконавчий пристрій адаптивної оптичної системи, що має що відображає поверхню з профілем, що деформується, і що задовольняє по амплітуді деформації, числу мір свободи і смузі пропускання частот сигналу, що управляє, вимогам, що забезпечують задану ефективність компенсації фазових збурень оптичного випромінювання.
Конструктивно адаптивні дзеркала можна розділити на дві великі групи — секціоновані дзеркала і дзеркала з суцільною поверхнею. У секціонованих дзеркалах кожна окрема секція допускає її переміщення і нахил (або тільки переміщення). Суцільне дзеркало під впливом спеціальних приводів випробовує складні деформації. Вибір тієї або іншої конструкції визначається специфікою системи, в якій його буде використано. До основних факторів, які враховуються в даному випадку, відносяться габаритний розмір, маса і якість виготовлення поверхні дзеркала. В даний час секціоновані дзеркала розглядаються як основа для створення крупногаборітних телескопів. Подібний телескоп може бути комбінованим. Наприклад, кожна окрема секція може бути суцільним адаптивним дзеркалом.
Секціоновані дзеркала — принципово найбільш простий клас адаптивних дзеркал. Суцільні адаптивні дзеркала представляють найбільший інтерес для розробників адаптивної оптики і мають велике число різних, часто неординарних варіантів виконання.
Три характеристики є для адаптивних дзеркал специфічними:
1. Діапазон переміщень характеризується чутливість приводу у складі дзеркала (звичайно чутливість виражається в переміщеннях поверхні в мікрометрах при збільшенні напруги, що управляє, на 1 В).
2. Область локальної деформації, міра свободи дзеркала, що відображає число, може бути задана ефективною шириною деформації одиничної амплітуди, викликаної дією одного приводу. Функція, що описує цю одиничну деформацію звана функцією відгуку, є однією з найважливіших характеристик адаптивного дзеркала.
3. Смуга пропускання частот визначається швидкодією використовуваного приводу і звичайно обмежена зверху механічними резонансами самої конструкції дзеркала.
Якщо конструкція дзеркала допускає створення коливань поверхні на частотах фазової модуляції, прийнятої для систем апертурного зондування, то функції корекції і модуляції можуть бути покладені на одне дзеркало. Якщо ж механічні резонанси лежать нижче необхідної межі значень частот (за часту це має місце для дзеркал, що працюють в ик-диапазоне), доводиться здійснювати модуляцію окремим модулюючим дзеркалом. Конструктивно воно звичайно відрізняється більшою жорсткістю пластини, що відображає, що деформується, і меншою чутливістю приводу, що дозволяє здійснювати осциляції поверхні в десятки кілогерц при амплітуді.
До приводу пред'являється суперечлива вимога — забезпечити великий динамічний діапазон переміщення при високій швидкодії. У адаптивній оптиці можна виділити наступні типи приводів: електромеханічний, електромагнітний, гідравлічний, п'єзоелектричний і магнітострикційний.
Електромеханічний привід , виконавчий механізм якого є гвинтом, що обертається від крокового електродвигуна має великий діапазон переміщення, не задовольняє типовим вимогам по смузі.
Чотири інших типу приводів володіють більшими широкосмуговими.
Електромагнітний привід має рухому в магнітному полі котушку, пов'язану з штовхачем і циліндровою пружиною.
Постійний магніт 3, жорстко прикріплений до опорної плити 2, одночасно служить для передачі зусилля до цієї плити. Електромагнітний привід, що працює на активне навантаження і вимагає безперервної витрати електроенергії, як правило, використовується в пристроях з малим числом каналів управління дзеркал, що змінюють тільки нахил хвилевого фронту.
У гідравлічному приводі тиск рідини регулюється за допомогою п'єзоелектричного золотника (мал. 2). При цьому тиск рідини діє на циліндрову пружину, пов'язану з поршневим штовхачем. Для гідравлічного приводу, таким чином, потрібна реалізація подвійного джерела енергії — гідравлічного і електричного. Основні втрати енергії в приводі обумовлені турбулентністю рідини і самоохолоджнем.
Принципово конструкція магнітострикційного приводу є стрижнем з магнітострикційного фериту, поміщеного в котушці соленоїда. Привід забезпечує високу амплітуду переміщень (10...50мкм).
Найбільшого поширення в адаптивній оптиці набув п'єзоелектричний привід . Є безліч варіантів побудови дзеркал з п'єзоелектричним приводом. П'єзоелектричні дзеркала умовно можна розділити на чотири групи: виконані у вигляді п'єзокерамичніх блоків; з біморфними п'єзоелементами; з трубчастими п'єзоелементами; цифровий пьзопривод; з п'єзопакетами (рис.4).
П'єзопакетами, пристрої, що є стовпчиком, набраним з великого числа П'єзокерамичних паралелепіпедів або дисків з електродами на верхній і нижній гранях, з'єднаними електрично паралельно.
1. Секціоновані дзеркала
Секціоновані адаптивні дзеркала з поступальним переміщенням секцій дозволяють змінювати тільки тимчасові фазові співвідношення між сигналами від окремих секцій (довжину оптичного шляху) (мал. 5), а дзеркала з переміщенням і нахилом секцій — також і просторову фазу. За допомогою другого типа дзеркал можна точніше здійснювати управління хвилевим фронтом і досягти бажаного ефекту при меншому числі секцій. Проте для забезпечення нахилів по двох осях число приводів дзеркала збільшують.
Необхідність розробки секціонованих дзеркал виникла в астрономічному приладобудуванні у зв'язку з тим, що діаметр наземних телескопів досяг деякої критичної величини (.. 6м), перевищення якої веде до великих технологічних складнощів, як у виготовленні, так і в експлуатації.
Крім того, слід враховувати, що вартість телескопа потенційно зростає з діаметром (вартість телескопа метром 5 м складає більше 20 млн. дол.), тоді як застосування складеного телескопа дозволяє зменшити вартість приблизно втричі.
Ідея секціонованого дзеркала дозволяє створити телескоп великого ефективного діаметру (>10 м) як наземного, та космічного базування. У інших областях техніки, таких як оптичний зв'язок і дальнометрия, секціоновані дзеркала історично з'явилися першим кроком до створення адаптивних дзеркал.
Якщо порівняти суцільну кільцеву апертуру телескопа з кільцевою апертурою, синтезованою з шести встановлених впритул круглих секцій, то для останнього випадку якість зображення (різкість) погіршується на 25%.
Величина зазора між елементами складеного дзеркала робить вплив на якість формування оптичного променя або зображення секціонованого дзеркала. Для дзеркала діаметром 7 м, що складається з 37 секцій шестикутної форми, розрахункова величина зазора складає 7,5 мм.
Істотними недоліками секціонованих дзеркал є необхідність контролю положення окремої секції і стану її поверхні, а також складність реалізації системи термостабілізації подібних дзеркал.
Секціоновані дзеркала застосовувалися в перших експериментах по адаптивній фазовій компенсації спотворень (у перших системах КОАТ), а також для поліпшення стану дозволу телескопа при спостереженні зірок через турбулентну атмосферу. У останньому випадку дзеркало складається з шести алюмінійованих скляних дзеркал з габаритними розмірами 1,25X 1,9x0,5 см, встановлених в лінійку неповним 0,15 см на п'єзоелектричні порожнисті циліндри. Електроди нанесені на обидві сторони стінок циліндра. Під дією напруги ± 1000 В циліндри поступально переміщають кожне дзеркало на ±2,5 мкм, 18 юстіровочних гвинтів дозволяють зробити плоскість всіх дзеркал паралельними.
2. Суцільні дзеркала, що деформуються
секціонований дзеркало п'єзоелектричний оптичний
--> ЧИТАТЬ ПОЛНОСТЬЮ <--