Реферат: Джеймс Клерк Максвелл

Дальнейшее развитие физики показало, что носителем электромагнитных взаимодействий является электромагнитное поле, теорию которого (в классической физике) Максвелл и создал. В этой теории Максвелл обобщил все известные к тому времени факты макроскопической электродинамики и впервые ввёл представление о токе смещения, порождающем магнитное поле подобно обычному току (току проводимости, перемещающимся электрическим зарядам). Максвелл выразил законы электромагнитного поля в виде системы 4 дифференциальных уравнений в частных производных (уравнения Максвелла).

Общий и исчерпывающий характер этих уравнений проявился в том, что их анализ позволил предсказать многие неизвестные до того явления и закономерности.

Так, из них следовало существование электромагнитных волн, впоследствии экспериментально открытых Г. Герцем. Исследуя эти уравнения, Максвелл пришёл к выводу об электромагнитной природе света (1865 г.) и показал, что скорость любых других электромагнитных волн в вакууме равна скорости света.

Он измерил (с большей точностью, чем В. Вебер и Ф. Кольрауш в 1856 году) отношение электростатической единицы заряда к электромагнитной и подтвердил его равенство скорости света. Из теории Максвелл вытекало, что электромагнитные волны производят давление.

Давление света было экспериментально установлено в 1899 П. Н. Лебедевым.

Теория электромагнетизма Максвелл получила полное опытное подтверждение и стала общепризнанной классической основой современной физики. Роль этой теории ярко охарактеризовал А. Эйнштейн: "... тут произошел великий перелом, который навсегда связан с именами Фарадея, Максвелла, Герца. Львиная доля в этой революции принадлежит Максвеллу… После Максвелла физическая реальность мыслилась в виде непрерывных, не поддающихся механическому объяснению полей... Это изменение понятия реальности является наиболее глубоким и плодотворным из тех, которые испытала физика со времен Ньютона".

В исследованиях по молекулярно-кинетической теории газов (статьи "Пояснения к динамической теории газов", 1860 г., и "Динамическая теория газов", 1866 г.) Максвелл впервые решил статистическую задачу о распределении молекул идеального газа по скоростям (распределение Максвелла). Максвелл рассчитал зависимость вязкости газа от скорости и длины свободного пробега молекул (1860), вычислив абсолютную величину последней, вывел ряд важных соотношений термодинамики (1860). Экспериментально измерил коэффициент вязкости сухого воздуха (1866). В 1873-74 гг. Максвелл открыл явление двойного лучепреломления в потоке (эффект Максвелла).

Максвелл был крупным популяризатором науки. Он написал ряд статей для Британской энциклопедии, популярные книги - такие как "Теория теплоты" (1870), "Материя и движение" (1873), "Электричество в элементарном изложении" (1881), переведённые на русский язык. Важным вкладом в историю физики является опубликование Максвеллом рукописей работ Г. Кавендиша по электричеству (1879) с обширными комментариями.

Учение об электромагнетизме и свете

С середины XIX столетия неустанно строился фундамент, на котором могло быть возведено здание физики XX века. При этом не обошлось без изменения проектов. Основные положения естественных наук либо утрачивали свою всеобщность, либо опровергались. Привычные убеждения, считавшиеся незыблемыми, рушились. Больше чем когда-либо физика в эти десятилетия становилась, по словам Эйнштейна, «приключением познания».

Во главе исследователей, которые, подобно архитекторам, решающим образом участвовали в перестройке фундамента физики нашего времени и заново возвели отдельные «этажи» здания, стоит Джеймс Клерк Максвелл, один из гениальнейших мыслителей в истории развития физики до Эйнштейна, охвативший в своих исследованиях физику во всех ее разделах.

Заслуги Максвелла как исследователя относятся к областям физиологического учения о цвете, кинетической теории теплоты и электромагнитной теории света.

Одновременно с Гельмгольцем Максвелл исследовал законы цветового зрения. Как предшественник австрийца Больцмана и американца Гиббса, он обосновал статистическое понимание кинетической теории газа. Его величайшей заслугой, однако является математическая разработка нового учения о магнетизме, электричестве и свете. Его достижения, по словам Планка, должны быть отнесены к «величайшим, изумительнейшим подвигам человеческого духа».

Когда Максвелл начинал свой путь физика, в сознании естествоиспытателей повсеместно и неколебимо царили законы ньютоновской механики. Все естественные явления старались объяснить с помощью простых механических законов движения в пространстве.

Подъем физики, связанный с открытием закона сохранения и превращения энергии, обеспечил в середине XIX века механистическому пониманию природы новую надежную поддержку. «Только механическое понимание является наукой», – заявлял берлинский физиолог Эмиль Дюбуа-Реймон. Нечто подобное писал и Гельмгольц: «Конечная цель всего естествознания – раствориться в механике».

Программе этого воззрения на природу, впервые изложенного в манускриптах Леонардо да Винчи, в трудах Галилея и философски обоснованного Декартом, законченную форму придал Ньютон в 1687 году в своем знаменитом произведении о математических началах учения о природе.

По Ньютону, мир вещей мог быть механически описан посредством указания четырех величин: времени, пространства, момента массы и силы. Время и пространство рассматривались при этом как «абсолютные»: оторванно и независимо от вещей, их заполняющих, и от событий, в них происходящих.

Кроме того, время и пространство строго разграничивались между собой. Взаимосвязь и взаимное влияние устанавливались только между моментами масс и силами. Все естественные процессы представлялись закономерными перемещениями материальных точек в пространстве и времени.

Эта «механика материальных точек», математически обоснованная Эйлером и Лагранжем, блестяще оправдалась и оказалась чрезвычайно плодотворной прежде всего в области астрономии. Ее основы были позднее распространены на движение жидкостей и упругие колебания тел и особенно успешно использовались при исследовании акустических явлений. Но в отдельных вопросах отчетливо выявилась ее ограниченность. Особенно часто возникали непреодолимые трудности в оптике.

Самым неудовлетворительным разделом в системе классической физики, созданной Ньютоном, было учение о свете.

Ньютон, следуя логике своего учения, считал свет естественной вещью, состоящей из материальных точек. Но уже в его время, как заметил Эйнштейн, «назревал жгучий вопрос: что происходит с материальными точками, образующими свет, когда свет поглощается?». Так неизбежно пришли к различию между весомыми и невесомыми частицами – малоубедительное решение, которое не могло долго считаться исчерпывающим объяснением.

Неудобства для глубоко мыслящих физиков таило в себе также представление о «силах дальнодействия».

Магнетизм, электричество и гравитация изображались как силы, действующие в пустом пространстве и распространяющиеся с бесконечно большой скоростью. Такое толкование физических взаимодействий, представляющее их едва ли не как сверхъестественные силы, не соответствовало трезво реалистической механистической картине природы. Уже Ньютон искал выход, но не добился успеха.

Не было недостатка в попытках объяснить световые явления принципиально иным способом. Гениальный голландский физик Христиан Гюйгенс, старший современник Ньютона, пытался охватить природу света своей теорией световых волн. Он предположил, что свет существует в виде продольных колебаний, которые распространяются в веществе, состоящем из мелких час

К-во Просмотров: 701
Бесплатно скачать Реферат: Джеймс Клерк Максвелл