Реферат: Эйлер, Леонард

2.2. Математический анализ

Одна из главных заслуг Эйлера перед наукой — монография «Введение в анализ бесконечно малых» (1748). В 1755 году выходит дополненное «Дифференциальное исчисление», а в 1768—1770 годах — три тома «Интегрального исчисления». В совокупности это фундаментальный, хорошо иллюстрированный примерами курс, с продуманной терминологией и символикой, откуда многое перешло и в современные учебники. Собственно современные методы дифференцирования и интегрирования были опубликованы в данных трудах.

Основание натуральных логарифмов было известно ещё со времён Непера и Якоба Бернулли, однако Эйлер дал настолько глубокое исследование этой важнейшей константы, что с тех пор она носит его имя. Другая исследованная им константа: постоянная Эйлера — Маскерони.

Он делит с Лагранжем честь открытия вариационного исчисления, выписав уравнения Эйлера — Лагранжа для общей вариационной задачи. В 1744 году Эйлер опубликовал первую книгу по вариационному исчислению («Метод нахождения кривых, обладающих свойствами максимума либо минимума»).

Эйлер значительно продвинул теорию рядов и распространил её на комплексную область, получив при этом знаменитую формулу Эйлера. Большое впечатление на математический мир произвели ряды, впервые просуммированные Эйлером, в том числе не поддававшийся до него никому ряд обратных квадратов :

Современное определение показательной, логарифмической и тригонометрических функций — тоже его заслуга, так же как их символика и обобщение на комплексный случай.[L 20] Формулы, часто именуемые в учебниках «условия Коши — Римана», более правильно было бы назвать «условиями Даламбера — Эйлера».

Он первый дал систематическую теорию интегрирования и используемых там технических приёмов, нашёл важные классы интегрируемых дифференциальных уравнений. Он открыл эйлеровы интегралы — ценные классы специальных функций, возникающие при интегрировании: бета-функция и гамма-функция Эйлера. Одновременно с Клеро вывел условия интегрируемости линейных дифференциальных форм от двух или трёх переменных (1739). Первый ввёл двойные интегралы. Получил серьёзные результаты в теории эллиптических функций, в том числе первые теоремы сложения.

С более поздней точки зрения, действия Эйлера с бесконечными рядами не всегда могут считаться корректными (обоснование анализа было проведено лишь полвека спустя), но феноменальная математическая интуиция практически всегда подсказывала ему правильный результат. Впрочем, дело было не только в интуиции, Эйлер действовал здесь достаточно сознательно, во многих важных отношениях его понимание смысла расходящихся рядов и операций с ними превосходило стандартное понимание XIX века и послужило основой современной теории расходящихся рядов, развитой в конце XIX — начале XX века.[L 21]

2.3. Геометрия

В элементарной геометрии Эйлер обнаружил несколько фактов, не замеченных Евклидом:

· Три высоты треугольника пересекаются в одной точке (ортоцентре).

· В треугольнике ортоцентр, центр описанной окружности и центр тяжести лежат на одной прямой — «прямой Эйлера».

· Основания трёх высот произвольного треугольника, середины трёх его сторон и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат все на одной окружности (окружности Эйлера).

· Число вершин (В), граней (Г) и рёбер (Р) у любого выпуклого многогранника связаны простой формулой: В + Г = Р + 2.

Второй том «Введения в анализ бесконечно малых» (1748) — это первый в мире учебник по аналитической геометрии и основам дифференциальной геометрии. Термин аффинные преобразования впервые введён в этой книге вместе с теорией таких преобразований.

В 1760 году вышли фундаментальные «Исследования о кривизне поверхностей». Эйлер обнаружил, что в каждой точке гладкой поверхности имеются два нормальных сечения с минимальным и максимальным радиусами кривизны, и плоскости их взаимно перпендикулярны. Вывел формулу связи кривизны сечения поверхности с главными кривизнами.

1771 год: опубликовано сочинение «О телах, поверхность которых можно развернуть на плоскость». В этой работе введено понятие развёртывающейся поверхности , то есть поверхности, которая может быть наложена на плоскость без складок и разрывов. Эйлер, однако, даёт здесь вполне общую теорию метрики, от которой зависит вся внутренняя геометрия поверхности. Позже исследование метрики становится у него основным инструментом теории поверхностей.

2.4. Комбинаторика

Эйлер много внимания уделял представлению натуральных чисел в виде сумм специального вида и сформулировал ряд теорем для вычисления числа разбиений.

Он исследовал алгоритмы построения магических квадратов методом обхода шахматным конем.

При решении комбинаторных задач он глубоко изучил свойства сочетаний и перестановок, ввёл в рассмотрение числа Эйлера.

2.5. Другие области математики

· Теория графов началась с решения Эйлером задачи о семи мостах Кёнигсберга.

· Метод ломаных Эйлера,

2.6. Механика и математическая физика

Множество работ Эйлера посвящены математической физике: механике, гидродинамике, акустике и др. В 1736 году вышел трактат «Механика, или наука о движении, в аналитическом изложении», знаменующий новый этап в развитии этой древней науки. 29-летний Эйлер отказался от традиционного геометрического подхода к механике и подвёл под неё строгий аналитический фундамент. По существу, с этого момента механика становится прикладной математической дисциплиной.

В 1755 году публикуются «Общие принципы движения жидкостей», в которых положено начало теоретической гидродинамике. Выведены основные уравнения гидродинамики (уравнение Эйлера) для жидкости без вязкости. Разобраны решения системы для разных частных случаев.

В 1765 году в книге «Теория движения твёрдых тел» Эйлер математически описал кинематику твёрдого тела конечных размеров (до него исследовалось в основном движение точки). Он ввёл в математику углы Эйлера и теорему вращения. Его имя также носят кинематическая формула распределения скоростей в твёрдом теле, уравнения (Эйлера — Пуассона) динамики твёрдого тела, важный случай интегрируемости в динамике твёрдого тела.

К-во Просмотров: 705
Бесплатно скачать Реферат: Эйлер, Леонард