Реферат: Экологические проблемы утилизации твердых бытовых отходов

металл

Блоки с добавками летучей золы Блоки со шлаком и летучей золой Обычные цементные блоки Портланд-цемент Цинк 18618 4482 53 29 Свинец 7278 5137 4 1 Медь 606 4668 13 9 Никель 78 109 47 18 Хром 190 146 31 38 Кадмий 731 44 0,26 0,04 Мышьяк 73 5 33 2

Загрязнение воды

Таблица 3

Исследования воды реки Doe Lea, на берегу которой расположен сжигатель опасных отходов.

Англия март 1992г

Расстояние от выпуска сточных вод в Doe Lea Диоксины Фураны
1 км выше выпуска 0,02 0,003
40 м выше выпуска 0,03 0,004
40 м ниже выпуска 13,0 12,0
1,2 км ниже выпуска 79,0 5,7
1,5 км ниже выпуска 97,0 9,4

Сточных вод в среднем образуется 2,5 м3 но тону сжигаемых отходов. Эта вода сильно загрязнена солями и токсичными металлами. Она всегда или сильнощелочная или сильно кислая. В том и другом случаи требует специальной обработки.

Таблица 4

Содержание загрязнений в сточных водах МСЗ

Загрязнение Вода из скруббера отходящих газов Вода охлаждения шлаков
PH 0.95 8.8
Cl 12900 1540
SO2 502 590
F 52 1.7
Cr 0.69 0.10
Cu 1.28 0.26
Ni 3.7 0.25
Zn 14.1 1.8
Cd 0.46 0.15
Pb 6.8 0.80
Hg 6.6 0.038

Следует заметить, что один анализ на диоксины в 1993 году в России стоил 5 тысяч долларов. Сейчас эта цена незначительно снизилась. Но, так как у большинства государств нет денег на регулярное проведение подобных анализов на мусороперерабатывающих заводах, о составе выбросов, ежедневно поступающих в атмосферу и гидросферу из труб реальных предприятий, можно только догадываться.

Способ переработки горючих отходов, основанный на газификации в сверхадиабатическом режиме

В Институте проблем химической физики РАН разработан эффективный метод термической переработки горючих отходов, основанный на использовании нового физического явления ? фильтрационного горения в сверхадиабатических режимах, при которых температура в зоне реакции существенно превышает адиабатическую температуру горения. Целенаправленное использование сверхадиабатических режимов для проведения процессов газификации открывает широкие возможности для утилизации разного рода горючих отходов с высокой энергетической эффективностью, экологической чистотой и относительно невысокими затратами.

Предлагаемые технологии термической переработки основаны на двухстадийной схеме. На первой стадии перерабатываемый материал подвергается паровоздушной газификации в сверхадиабатическом режиме горения.

Схема процесса термической переработки горючих отходов с получением тепловой и электрической энергии

Газификацию осуществляют в реакторе-газификаторе шахтного типа при реализации сверхадиабатического режима горения в “плотном” слое.

Преимущества по сравнению с методами прямого сжигания

Процесс термической переработки горючих отходов с получением тепловой и электрической энергии перед прямым сжиганием имеет следующие преимущества:

процесс газификации имеет высокий энергетический КПД (до 95%), позволяющий перерабатывать материалы с малым содержанием горючих составляющих (с зольностью до 90%) или с высокой влажностью (до 60%);

низкие линейные скорости газового потока в реакторе и его фильтрация через слой исходного перерабатываемого материала обеспечивают крайне низкий вынос пылевых частиц с продукт-газом, что дает возможность сильно сократить капитальные затраты на газоочистное и энергетическое оборудование;

в некоторых случаях, когда необходимо проводить очистку газовых выбросов от соединений серы, хлора или фтора, пыли, паров ртути, очищать продукт-газ оказывается проще, чем дымовые газы, благодаря низкой температуре, меньшему объему и более высокой концентрации загрязнителей; кроме того, сера присутствует в продукт-газе в восстановленных формах (H2 S, COS), которые много проще поглотить, чем SO2;

при газификации происходит частичное разложение азотсодержащих органических соединений в бескислородной среде, что дает меньшее количество окислов азота в дымовых газах;

сжигание газа в современных газовых горелках – наиболее чистый способ сжигания из всех известных; за счет высокой полноты сгорания дымовые газы содержат чрезвычайно мало окиси углерода и остаточных углеводородов;

сжигание в две стадии позволяет резко уменьшить образование диоксинов (полихлорированных дибензодиоксинов и дибензофуранов), поскольку даже при наличии хлора подавляется появление в дымовых газах ароматических соединений (предшественников диоксинов) и обеспечивается низкое содержание пылевых частиц (катализаторов образования диоксинов в дымовых газах);

зола, выгружаемая из реактора, имеет низкую температуру и практически не содержит недогоревшего углерода;

при утилизации некоторых видов отходов имеется возможность извлечения из продукт-газа товарных материалов для последующей переработки (например, нефти и др.);

выбор оборудования для утилизации тепла при сжигании продукт-газа не ограничивается паровым или водяным котлом, также возможно применение газовых турбин и энергетических дизелей; предлагаемая схема переработки легче вписывается в имеющуюся промышленную инфраструктуру, например, продукт-газ может подаваться в имеющуюся топку для замены части кондиционного топлива;

процесс газификации имеет высокий энергетический КПД (до 95%), позволяющий перерабатывать материалы с малым содержанием горючих составляющих (с зольностью до 90%) или с высокой влажностью (до 60%);

низкие линейные скорости газового потока в реакторе и его фильтрация через слой исходного перерабатываемого материала обеспечивают крайне низкий вынос пылевых частиц с продукт-газом, что дает возможность сильно сократить капитальные затраты на газоочистное и энергетическое оборудование;

в некоторых случаях, когда необходимо проводить очистку газовых выбросов от соединений серы, хлора или фтора, пыли, паров ртути, очищать продукт-газ оказывается проще, чем дымовые газы, благодаря низкой температуре, меньшему объему и более высокой концентрации загрязнителей; кроме того, сера присутствует в продукт-газе в восстановленных формах (H2 S, COS), которые много проще поглотить, чем SO2;

при газификации происходит частичное разложение азотсодержащих органических соединений в бескислородной среде, что дает меньшее количество окислов азота в дымовых газах;

сжигание газа в современных газовых горелках – наиболее чистый способ сжигания из всех известных; за счет высокой полноты сгорания дымовые газы содержат чрезвычайно мало окиси углерода и остаточных углеводородов;

К-во Просмотров: 227
Бесплатно скачать Реферат: Экологические проблемы утилизации твердых бытовых отходов