Реферат: Экологические проблемы утилизации твердых бытовых отходов
металл
Загрязнение воды
Таблица 3
Исследования воды реки Doe Lea, на берегу которой расположен сжигатель опасных отходов.
Англия март 1992г
Расстояние от выпуска сточных вод в Doe Lea | Диоксины | Фураны |
1 км выше выпуска | 0,02 | 0,003 |
40 м выше выпуска | 0,03 | 0,004 |
40 м ниже выпуска | 13,0 | 12,0 |
1,2 км ниже выпуска | 79,0 | 5,7 |
1,5 км ниже выпуска | 97,0 | 9,4 |
Сточных вод в среднем образуется 2,5 м3 но тону сжигаемых отходов. Эта вода сильно загрязнена солями и токсичными металлами. Она всегда или сильнощелочная или сильно кислая. В том и другом случаи требует специальной обработки.
Таблица 4
Содержание загрязнений в сточных водах МСЗ
Загрязнение | Вода из скруббера отходящих газов | Вода охлаждения шлаков |
PH | 0.95 | 8.8 |
Cl | 12900 | 1540 |
SO2 | 502 | 590 |
F | 52 | 1.7 |
Cr | 0.69 | 0.10 |
Cu | 1.28 | 0.26 |
Ni | 3.7 | 0.25 |
Zn | 14.1 | 1.8 |
Cd | 0.46 | 0.15 |
Pb | 6.8 | 0.80 |
Hg | 6.6 | 0.038 |
Следует заметить, что один анализ на диоксины в 1993 году в России стоил 5 тысяч долларов. Сейчас эта цена незначительно снизилась. Но, так как у большинства государств нет денег на регулярное проведение подобных анализов на мусороперерабатывающих заводах, о составе выбросов, ежедневно поступающих в атмосферу и гидросферу из труб реальных предприятий, можно только догадываться.
Способ переработки горючих отходов, основанный на газификации в сверхадиабатическом режиме
В Институте проблем химической физики РАН разработан эффективный метод термической переработки горючих отходов, основанный на использовании нового физического явления ? фильтрационного горения в сверхадиабатических режимах, при которых температура в зоне реакции существенно превышает адиабатическую температуру горения. Целенаправленное использование сверхадиабатических режимов для проведения процессов газификации открывает широкие возможности для утилизации разного рода горючих отходов с высокой энергетической эффективностью, экологической чистотой и относительно невысокими затратами.
Предлагаемые технологии термической переработки основаны на двухстадийной схеме. На первой стадии перерабатываемый материал подвергается паровоздушной газификации в сверхадиабатическом режиме горения.
Схема процесса термической переработки горючих отходов с получением тепловой и электрической энергии
Газификацию осуществляют в реакторе-газификаторе шахтного типа при реализации сверхадиабатического режима горения в “плотном” слое.
Преимущества по сравнению с методами прямого сжигания
Процесс термической переработки горючих отходов с получением тепловой и электрической энергии перед прямым сжиганием имеет следующие преимущества:
процесс газификации имеет высокий энергетический КПД (до 95%), позволяющий перерабатывать материалы с малым содержанием горючих составляющих (с зольностью до 90%) или с высокой влажностью (до 60%);
низкие линейные скорости газового потока в реакторе и его фильтрация через слой исходного перерабатываемого материала обеспечивают крайне низкий вынос пылевых частиц с продукт-газом, что дает возможность сильно сократить капитальные затраты на газоочистное и энергетическое оборудование;
в некоторых случаях, когда необходимо проводить очистку газовых выбросов от соединений серы, хлора или фтора, пыли, паров ртути, очищать продукт-газ оказывается проще, чем дымовые газы, благодаря низкой температуре, меньшему объему и более высокой концентрации загрязнителей; кроме того, сера присутствует в продукт-газе в восстановленных формах (H2 S, COS), которые много проще поглотить, чем SO2;
при газификации происходит частичное разложение азотсодержащих органических соединений в бескислородной среде, что дает меньшее количество окислов азота в дымовых газах;
сжигание газа в современных газовых горелках – наиболее чистый способ сжигания из всех известных; за счет высокой полноты сгорания дымовые газы содержат чрезвычайно мало окиси углерода и остаточных углеводородов;
сжигание в две стадии позволяет резко уменьшить образование диоксинов (полихлорированных дибензодиоксинов и дибензофуранов), поскольку даже при наличии хлора подавляется появление в дымовых газах ароматических соединений (предшественников диоксинов) и обеспечивается низкое содержание пылевых частиц (катализаторов образования диоксинов в дымовых газах);
зола, выгружаемая из реактора, имеет низкую температуру и практически не содержит недогоревшего углерода;
при утилизации некоторых видов отходов имеется возможность извлечения из продукт-газа товарных материалов для последующей переработки (например, нефти и др.);
выбор оборудования для утилизации тепла при сжигании продукт-газа не ограничивается паровым или водяным котлом, также возможно применение газовых турбин и энергетических дизелей; предлагаемая схема переработки легче вписывается в имеющуюся промышленную инфраструктуру, например, продукт-газ может подаваться в имеющуюся топку для замены части кондиционного топлива;
процесс газификации имеет высокий энергетический КПД (до 95%), позволяющий перерабатывать материалы с малым содержанием горючих составляющих (с зольностью до 90%) или с высокой влажностью (до 60%);
низкие линейные скорости газового потока в реакторе и его фильтрация через слой исходного перерабатываемого материала обеспечивают крайне низкий вынос пылевых частиц с продукт-газом, что дает возможность сильно сократить капитальные затраты на газоочистное и энергетическое оборудование;
в некоторых случаях, когда необходимо проводить очистку газовых выбросов от соединений серы, хлора или фтора, пыли, паров ртути, очищать продукт-газ оказывается проще, чем дымовые газы, благодаря низкой температуре, меньшему объему и более высокой концентрации загрязнителей; кроме того, сера присутствует в продукт-газе в восстановленных формах (H2 S, COS), которые много проще поглотить, чем SO2;
при газификации происходит частичное разложение азотсодержащих органических соединений в бескислородной среде, что дает меньшее количество окислов азота в дымовых газах;
сжигание газа в современных газовых горелках – наиболее чистый способ сжигания из всех известных; за счет высокой полноты сгорания дымовые газы содержат чрезвычайно мало окиси углерода и остаточных углеводородов;