Реферат: Экспертные оценки в управлении организацией

Определяется средний ранг совокупности признаков:

Вычисляется отклонение dj среднего ранга j-го признака от среднего ранга совокупности:

Определяется число одинаковых рангов, назначенных экспертами j-му признаку – tq.

Определяется количество групп одинаковых рангов – Q. Определяется коэффициент конкордации по формуле:

и

Коэффициент может принимать значения в пределах от 0 до 1. При полной согласованности мнений экспертов коэффициент конкордации равен единице при полном разногласии – нулю. Наиболее реальным является случай частичной согласованности мнений экспертов.

По мере увеличения согласованности мнений экспертов коэффициент конкордации возрастает и в пределе стремится к единице. Однако даже если он равен или близок к нулю, не всегда имеет место полное разногласие. Среди экспертов могут быть группы с хорошо согласованными мнениями, но мнения эти – противоположны и в общей массе нейтрализуют друг друга. В таком случае следует проделать кластерный или комбинированный анализ для выявления этих групп.

Достоинства метода простой ранжировки:

1) сравнительная простота процедуры получения оценок;

2) меньшее число экспертов по сравнению с другими методами при оценке одного и того же набора признаков.

Недостаток же его в том, что:

1) заведомо считают распределение оценок равномерным;

2) уменьшение важности признаков предполагается также равномерным, в то время как на практике этого не бывает.

Метод задания весовых коэффициентов заключается в присвоении всем признакам весовых коэффициентов. Весовые коэффициенты могут быть проставлены двумя способами:

1) всем признакам назначают весовые коэффициенты так, чтобы суммы коэффициентов была равна какому-то фиксированному числу (например, единице, десяти или ста);

2) наиболее важному из всех признаков придают весовой коэффициент, равный какому-то фиксированному числу, а всем остальным – коэффициенты, равные долям этого числа.

Обобщенное мнение экспертов также получаем с помощью методов математической статистики по формулам (2.1 – 2.5).

Метод последовательных сравнений заключается в следующем:

1) эксперт упорядочивает все признаки в порядке уменьшения их значимости: А1>A2>…>An ;

2) присваивает первому признаку значение, равное единице: A1=1, остальным же признакам назначает весовые коэффициенты в долях единицы;

3) сравнивает значение первого признака с суммой всех последующих.

Возможны три варианта:

A1 >A2 + A3 + … + An

A1 = A2 + A3 + … + An

A1 < A2 + A3 + …+ An

Эксперт выбирает наиболее соответствующий, по его мнению, вариант и приводит в соответствие с ним оценку первого события.

4) сравнивает значение первого признака с суммой всех последующих за вычетом самого последнего признака.

Приводит оценку первого признака в соответствие с выбранным из трех вариантов неравенством:

A1 > A2 + A3 + … + An-1

A1 = A2 + A3 + … + An-1

A1 < A2 + A3 + … + An-1

5) процедура повторяется до сравнения A1 с A2 + A3.

После того как эксперт уточнил оценку первого признака в соответствии с выбранным им неравенством из трех возможных:

A1 > A2 + A3

A1 = A2 + A3

A1 < A2 + A3

Он переходит к уточнению оценки второго признака A2 по той же схеме, что и в случае первого, т.е. сравнивается оценка второго признака с суммой последующих.

Преимущество его состоит в том, что эксперт в процессе оценивания признаков сам анализирует свои оценки. Вместо назначения коэффициентов возникает творческий процесс создания этих коэффициентов.

Недостатки метода таковы:

К-во Просмотров: 296
Бесплатно скачать Реферат: Экспертные оценки в управлении организацией