Реферат: Экспертные системы 9
В любой момент времени в системе существуют три типа знаний:
- Структурированные знания- статические знания о предметной области. После того как эти знания выявлены, они уже не изменяются.
- Структурированные динамические знания- изменяемые знания о предметной области. Они обновляются по мере выявления новой информации.
- Рабочие знания- знания, применяемые для решения конкретной задачи или проведения консультации.
Все перечисленные выше знания хранятся в базе знаний. Для ее построения требуется провести опрос специалистов, являющихся экспертами в конкретной предметной области, а затем систематизировать, организовать и снабдить эти знания указателями, чтобы впоследствии их можно было легко извлечь из базы знаний.
Экспертиза может проводиться только в одной конкретной области. Так, программа, предназначенная для определения конфигурации систем ЭВМ, не может ставить медицинские диагнозы.
База знаний и механизм вывода являются различными компонентами. Действительно, часто оказывается возможным сочетать механизм вывода с другими базами знаний для создания новых ЭС. Например, программа анализа инфекции в крови может быть применена в пульманологии путем замены базы знаний, используемой с тем же самым механизмом вывода.
Наиболее подходящая область применения- решение задач дедуктивным методом. Например, правила или эвристики выражаются в виде пар посылок и заключений типа “если-то”.
Эти системы могут объяснять ход решения задачи понятным пользователю способом. Обычно мы не принимаем ответ эксперта, если на вопрос “Почему ?” не можем получить логичный ответ. Точно так же мы должны иметь возможность спросить систему, основанную на знаниях, как было получено конкретное заключение.
Выходные результаты являются качественными (а не количественными).
Системы, основанные на знаниях, строятся по модульному принципу, что позволяет постепенно наращивать их базы знаний.
Компьютерные системы, которые могут лишь повторить логический вывод эксперта, принято относить к ЭС первого поколения. Однако специалисту, решающему интеллектуально сложную задачу, явно недостаточно возможностей системы, которая лишь имитирует деятельность человека. Ему нужно, чтобы ЭС выступала в роли полноценного помощника и советчика, способного проводить анализ нечисловых данных, выдвигать и отбрасывать гипотезы, оценивать достоверность фактов, самостоятельно пополнять свои знания, контролировать их непротиворечивость, делать заключения на основе прецедентов и, может быть, даже порождать решение новых, ранее не рассматривавшихся задач. Наличие таких возможностей является характерным для ЭС второго поколения, концепция которых начала разрабатываться 9-10 лет назад. Экспертные системы, относящиеся ко второму поколению, называют партнерскими, или усилителями интеллектуальных способностей человека. Их общими отличительными чертами является умение обучаться и развиваться, т.е. эволюционировать.
В экспертных системах первого поколения знания представлены следующим образом:
- знаниями системы являются только знания эксперта, опыт накопления знаний не предусматривается.
- методы представления знаний позволяли описывать лишь статические предметные области.
- модели представления знаний ориентированы на простые области.
Представление знаний в экспертных системах второго поколения следующее:
- используются не поверхностные знания, а более глубинные. Возможно дополнение предметной области.
- ЭС может решать задачи динамической базы данных предметной области.
2.3 Теория фреймов
Теория фреймов - это парадигма для представления знаний с целью использования этих знаний компьютером. Впервые была представлена Минским, как попытка построить фреймовую сеть, или парадигму с целью достижения большего эффекта понимания. С одной стороны Минский пытался сконструировать базу данных, содержащую энциклопедические знания, но с другой стороны, он хотел создать наиболее описывающую базу, содержащую информацию в структурированной и упорядоченной форме. Эта структура позволила бы компьютеру вводить информацию в более гибкой форме, имея доступ к тому разделу, который требуется в данный момент. Минский разработал такую схему, в которой информация содержится в специальных ячейках, называемых фреймами, объединенными в сеть, называемую системой фреймов. Новый фрейм активизируется с наступлением новой ситуации. Отличительной его чертой является то, что он одновременно содержит большой объем знаний и в то же время является достаточно гибким для того, чтобы быть использованным как отдельный элемент БД. Термин «фрейм» был наиболее популярен в середине семидесятых годов, когда существовало много его толкований, отличных от интерпретации Минского.
Итак, как было сказано выше фреймы – это фрагменты знания, предназначенные для представления стандартных ситуаций. Термин «фрейм» (Frame– рамка) был предложен Минским. Фреймы имеют вид структурированных компонентов ситуаций, называемых слотами. Слот может указывать на другой фрейм, устанавливая, таким образом, связь между двумя фреймами. Могут устанавливаться общие связи типа связи по общению. С каждым фреймом ассоциируется разнообразная информация ( в том числе и процедуры), например ожидаемые процедуры ситуации, способы получения информации о слотах, значение принимаемые по умолчанию, правила вывода.
Формальная структура фрейма имеет вид:
f[<N1, V1>, <N2, V2>, …, <Nk,Vk>],
где f – имя фрейма; пара <Ni, Vi> - i-ый слот, Ni– имя слота и Vi – его значение.
Значение слота может быть представлено последовательностью
<K1><Li>;...; <Kn><Ln>; <R1>; …; <Rm>,
где Ki– имена атрибутов, характерных для данного слота; Li – значение этих атрибутов, характерных для данного слота; Rj – различные ссылки на другие слоты.
Каждый фрейм, как структура хранит знания о предметной области (фрейм–прототип), а при заполнении слотов знаниями превращается в конкретный фрейм события или явления.