Реферат: Электрические свойства сплавов типа твердых растворов

В ряде сплавов, содержащих в своем составе переходные металлы, однофазные по данных металлографического и рентгеновского анализа, было обнаружено, что при наклепе их электросопротивление падает. Структурное состояние таких сплавов было названо К-состоянием.

По-видимому, это состояние характеризуется внутрикристаллической неоднородностью твердого раствора.

Изучение физических свойств достоверно указывает на наличие особого фазового превращения и особой структуры некоторых твердых растворов. К ним относятся никельхромовые, никельмедные, никельмедьцинковые, железоалюминевые и другие.

Было обнаружено также, что в сплавах, в которых электрическое сопротивление при наклепе уменьшается, оно снова возрастает при рекристаллизационном отжиге. Эти изменения нельзя связать с нарушением при наклепе порядка в расположении атомов и восстановлением его при отжиге; при разрушении упорядоченной структуры электросопротивление должно было бы возрастать, а при рекристаллизации – уменьшаться.

Необычное изменение электросопротивления наблюдается также и при температурной обработке железоникелевых сплавов, содержащих до 6% молибдена.

На рисунке 6 приведено изменение удельного электросопро-тивления однофазных сплавов состава Ni3 Fe (приблизительно) с различным содержанием молибдена (от 0 до 6%) в зависимости от степени обжатия при холодной деформации. В исходном состоянии были отожжены с очень медленным охлаждением от 550 до 200°С (в течении недели) для получения структуры, стабильной при низкой температуре.

Из рис.6 следует, что электросопротивление сплава Ni3 Fe без Мо увеличивается на 35% после холодной деформации, что соответствует разупорядочению. Поскольку холодная деформация приводит вновь к статистическому распределению атомов по узлам решетки, принимается, что увеличение электросопротивления после сильного обжатия,, грубо говоря, пропорционально степени порядка, существовавшей в сплаве после отжига, до наклепа. Уже при 0,5% Мо значительно уменьшается исходная степень порядка сплава Ni3 Fe, а при 1% Мо почти полностью отсутствует упорядоченное расположение атомов.

Предполагается, что при низких температурах под влиянием Мо упорядочение Ni3 Fe устраняется и заменяется сегрегацией в виде скоплений размером порядка длины свободного пробега, причем увеличивается остаточное сопротивление. Переход к сегрегации происходит непрерывно с возрастанием содержания молибдена.

Деформация «разгоняет» эти скопления и приводит к статистическому распределению атомов, причем электросопротивление понижается; последующий отпуск при температуре до 450°С снова его восстанавливает. Нагрев до более высоких температур, также как и в упорядочивающемся сплаве Ni3 Fe, сообщает решетке твердого раствора статистическую однородность.

Усиление рассматриваемого эффекта с концентрацией третьего компонента принципиально отличает этот процесс от упорядочения.

Исследованием кинетики превращения однородного раствора в неоднородный (сплав с 79% Ni, 5% Мо, 16% Fe) установлено, что энергия активации этого процесса равна 294000 Дж/моль. Эта величина и общие черты описываемого превращения свидетельствуют о том, что оно происходит обычным диффузионным путем. Об этом говорит также и обратимость изменений электросопротивления при наклепе и рекристаллизации, при закалке и отпуске.

Судя по изменению электросопротивления, неоднородный твердый раствор найден в сплавах как с объемноцентрированной, так и с гранецентрированной кубической решеткой.

Влияние ближнего порядка на электрическое сопротивление.

Рассмотрим сначала причины изменения электросопротивления при повышении температуры отжига предварительно хорошо отожженных образцов. Хорошо отожженные образцы получались путем медленного (со скоростью » 50 град/час) охлаждения образцов после отжига их при 600-800 °С. В таких образцах степень порядка соответствует примерно состоянию, достигаемому отжигом при 200°С (ниже диффузные процессы идут крайне медленно). Учет разницы в a (в a-Cu – A1 F1 /G » 4%, F2 /G » 3%, F3 /G » 1,3%, но, поскольку a3 в отожженных сплавах весьма мало и С21 =1/2) повышает электросопротивление на 1-3% при повышении температуры отжига до 400°С. кроме того, за счет понижения n* , достигающего 11-12%, рост электросопротивления должен составить » 8%. Таким образом, суммарное повышение электрического сопротивления при повышении температуры отжига до 400°С должно достигать 9-11%. Измеренный же экспериментально эффект составляет » 5-6%. Это различие между расчетом и экспериментом может быть обусловлено рассасыванием неоднородностей, возможно возникших в a-Cu-A1 при медленном охлаждении образцов, а возможно, и влиянием фоновой части электросопротивления.

Картина изменения электросопротивления при термической обработке деформированных образцов сложнее и, что весьма существенно, в значительной мере зависит от всей истории исследованного образца (например, электросопротивления предварительно отожженных образцов или деформированных, совпадают между собой при Т ³ 3500 С). В связи с этим здесь будет рассмотрена лишь общая схема возможной интерпретации изменения электрического сопротивления в сплаве a - Cu – Al и указанны основные факторы, определяющие поведение электросопротивления при термической обработке этого сплава после деформации. В различных конкретных условиях комбинации основных факторов могут, разумеется, оказаться различными.

Понижение электросопротивления при отжиге деформированных сплавов a - Cu – Al в интервале температур 20 – 2500 С происходит за счет следующих факторов: 1) роста |a1 |, приводящего к понижению электросопротивления на 5-10%; 2) роста n* , вызывающего понижение r на 6-7%; 3) отжига обычных дефектов, возникающих при деформации; 4) рассасывания малых некогерентных областей, появляющихся при деформации скорее всего за счет восходящей диффузии при локальных разогревах и приводящих к появлению дополнительного диффузного рассеяния рентгеновских лучей. Кроме того, r должно изменяться за счет образования малых концентрационных неоднородностей и областей с различным типом упорядочения, обнаруженных при низкотемпературном отжиге, что должно вызвать рост r вследствие отражения электронов от границ этих областей. Экспериментально обнаруженное понижение r составляет в этом случае 18-20%. Это означает, что примерно 2/3 наблюдаемого экспериментально обусловлено изменением параметров порядка и связанного в известной степени n*. На долю остальных факторов приходится примерно 1/3, то есть 6-8%.

Отметим, что эти представления позволяют объяснить по-новому эффект повышения электросопротивления при продолжительном низкотемпературном отжиге образцов a - Cu – Al. Такой отжиг вызывает, вследствии переупорядочения в обогащенных Al областях твердого раствора уменьшение |a1 |. Уменьшение |a1 | и образование границ между областями с разной степенью порядка и обуславливают обнаруженный эффект.

При более высоких температурах отжига (250 – 4000 С) продолжают действовать те же факторы (поскольку время отжига мало, ни один из факторов не прекращает свое действие полностью), и поэтому r продолжает падать. Однако при этих температурах одновременно с упорядочиванием в одних участках (в которых достаточно больше значения параметров порядка ранее небыли достигнуты) начинают идти процессы разупорядочивания в других областях образца. На начальной стадии отжига при указанных температурах повышается роль изменения областей концентрационных неоднородностей. Все эти процессы, безусловно, влияют на вид кривой r( t) или r( T) и большое число одновременно действующих в противоположных направлениях механизмов затрудняет даже полуколичественную интерпретацию обнаруживаемых эффектов.

Укажем, что именно с процессами образования областей концентрационных неоднородностей с очень высокой степенью ближнего порядка в них связан эффект резкого возрастания n* вблизи 300 – 3500 С.

Таким образом, объяснение изменения электросопротивления сплава a - Cu – Al возможно на основе тех же представлений, что и для других сплавов, и это подчеркивает общий характер закономерностей, определяющих поведение физических свойств в однофазных твердых растворах.

Проведенное рассмотрение показывает, что существуют три основных, дополнительных по сравнению с чистыми металлами, фактора, комбинации которых определяют особенности поведения электросопротивления при отжиге, деформации или облучении твердых растворов.


Литературный обзор

Эффект Холла в твердых растворах (Fe1- X MnX )2 P. В интервале температур Т = 42 – 300 К и магнитных полей М = 0 – 7 Тл измерили намагниченность М, нормальное и аномальное сопротивления Холла кристаллов (Fe1- X MnX )2 P (при 0 £ Х £ 0,005) полученных из порошков Fe, Mn, P (для предупреждения образования Fe3 O в исходную смесь добавляют избыток Р). Зависимость М(Н) и М(Т) давали основание предположить в качестве основного источника аномального эффекта – анизотропное рассеяние, а нормального эффекта – вклады обоих типов носителей заряда.

Обнаружено, что при более высоких температурах отжига (200 – 4500 С) продолжают действовать те же факторы, что и при более низких температурах (поскольку время отжига мало, ни один из факторов не прекращает свое действие полностью), и поэтому r продолжает падать. Однако при этих температурах одновременно с упорядочиванием в одних участках (в которых достаточно больше значения параметров порядка ранее небыли достигнуты) начинают идти процессы разупорядочивания в других областях образца. На начальной стадии отжига при указанных температурах повышается роль изменения областей концентрационных неоднородностей. Все эти процессы, безусловно, влияют на вид кривой r( t) или r( T) и большое число одновременно действующих в противоположных направлениях механизмов затрудняет даже полуколичественную интерпретацию обнаруживаемых эффектов.


Литература

Иверонова В.И. «Ближний порядок в твердых растворах», М.: 1989.

Вопросы металловедения и физики металлов (сборник статей), 1989.

К-во Просмотров: 214
Бесплатно скачать Реферат: Электрические свойства сплавов типа твердых растворов