Реферат: Электромагнитная масса кулоновского поля
Свободное перемещение статического электрического поля в вакууме хорошо изучено. Однако свойства электромагнитной массы (ЭМ-массы), связанной с кулоновским полем, до сих пор подвергаются обсуждению. Вследствие эквивалентности массы (M ) и энергии ( W = Mc ) можно рассматривать на равных, как массу, так и энергию. Представим некоторую конфигурацию электрических зарядов и, совершив работу, получим другую конфигурацию. Затраченная работа перейдёт в дополнительную потенциальную энергию взаимодействия зарядов. Где локализуется приобретённая энергия? Простой расчёт показывает [1], что она локализуется не в зарядах, а в поле взаимодействия зарядов. Кроме того, движущееся кулоновское поле реализует себя тем, что в каждой пространственной точке оно порождает магнитное поле. И ещё: при излучении ЭМ-волн фрагменты энергии поля проявляются самостоятельно вдали от зарядов. Таким образом, кулоновское поле будет рассматриваться ниже, как материальный объект. Однако не следует полностью отождествлять ЭМ-массу с механической массой – слишком большие различия между ними (разные формы материи, магнитное поле).
Другая дискуссионная тема: вектор Пойнтинга, правильно описывающий плотность потока энергии электромагнитной волны, терпит неудачу в применении к переносу энергии кулоновским полем.
Рассмотрение близких к данной теме вопросов можно найти в работах [2, 3].
Объектом исследования выбрана модель электрического заряда ( q ), распределённого по сфере радиусом (r ), в которой внутреннее поле отсутствует. Такое ограничение требуется для того, чтобы устранить «особую точку», и иметь конкретное электрическое поле в «чистом» виде. В то же время сохраняется возможность использовать формулы для точечного заряда. Все изменения поля происходят на этапе ускорения (торможения) заряда. Приобретённые свойства полей сохраняются во время движения с постоянной скоростью (v ). Именно этот этап перемещения заряда рассматривается в данной статье. В качестве «стартовой позиции» выбрана релятивистская формула напряжённости (E ) электрического поля точечного заряда (сферические координаты), представленная в «Берклеевском курсе физики» Э. Парселла [4], а также в «Общем курсе физики» И.В. Савельева [5]:
; β = v/c ,
c – электрическая постоянная; θ – угол между векторами v и E . Относительно координатной оси (0х) – линии движения – поле
Е симметрично, и не зависит от азимутального угла (φ).
Напряжённости Е по формуле (1) выражают в рамках специальной теории относительности (СТО) поле заряда в движущейся (собственной) системе отсчёта, измеренное неподвижным (сторонним) наблюдателем. Таким же способом интерпретируются координаты, последующие формулы и расчёты по ним.
Преобразования координат в формуле (1) написаны для одновременных событий в неподвижной и движущейся системах отсчёта в момент времени ( t = 0). Исходя из этого, «стартовая» формула (1) не зависит от времени. Очевидно, что при
v = const, формулы не изменятся и для других моментов (
t ). Одно из ранних доказательств в рамках (СТО) перемещения заряда с сохранением формы его электрического поля представлено в сборнике [6]. Вариант сохранения поля заряда при его движении с постоянной скоростью без использования «запаздывающего взаимодействия» предложен в работе [2].
При v = 0, γ = 1, формула (1) описывает кулоновское поле заряда в состоянии покоя. Величины, относящиеся к неподвижной системе отсчёта, будут отмечены подстрочным индексом «0». Изменения, происходящие при увеличении (γ), обусловлены релятивистским сокращением масштабов длины (
x ) по линиям движения,
и увеличением напряжённости ( r , θ, φ, γ), поперечной по отношению к скорости (
v ) компоненты поля Е .
Продольная составляющая поля Е , параллельная скорости, остаётся без изменения.
Явная зависимость величин без индекса «0» от (γ) для сокращения записи здесь и далее не всегда указывается, но она всегда присутствует. Именно формулы (1a, 1b, 1c) служат основанием для деформации поля
Е и сохранения его формы во время движения. Названные преобразования в реальном мире требуют энергетических затрат, и происходят под действием внешних (ускоряющих) сил.
Энергия W /2) E ( r , θ, φ, γ) по всему объёму поля.
Здесь (γ) является параметром, характеризующим скорость движения заряда. Коэффициент,
получен интегрированием в сферических (преобразованных) координатах по радиусу ( r ) и по углу (φ). Возможность такого интегрирования при одинаковых значениях (
r ) для всех (θ, φ) обусловлена направленностью векторов
E по преобразованным радиусам r .
При γ = 1,
W (1) = 2 k . Энергия заряженной проводящей сферы
W = q /2 , где
r , электроёмкость сферы радиусом (
r ), и потенциальная энергия взаимодействия двух одинаковых точечных зарядов, находящихся на расстоянии (2
r ),
--> ЧИТАТЬ ПОЛНОСТЬЮ <--