Реферат: Электронная микроскопия

Разрешающая способность микроскопа - это минимальное расстояние между ближайшими точками, при котором их ещё можно наблюдать раздельно.

Из теории оптической микроскопии следует, что разрешающая способность выражается как

 = /NA ,

где NA - числовая апертура линз объектива,  - длина волны излучения, в котором формируется изображение в микроскопе.

Для светового микроскопа  = 400...750 нм, а значение NA для лучших объективов не превышает 1,5. Это говорит о том, что даже в самых лучших световых микроскопах нельзя наблюдать детали объекта меньше чем 200 нм.

Глубина резкости - это расстояние вдоль оптической оси, на котором расфокусировка (т.е. неточность установки объектива по отношению к объекту и его изображению) не влияет на разрешающую способность:

D =  / sin  ,

где 2 - угол расходимости лучей, образующих изображение предмета.

Увеличение любого микроскопа равно отношению размера, разрешаемого невооружённым глазом (0.2 мм) к размеру наименьшей детали изображения, разрешаемого микроскопом. Для светового микроскопа

M = 0.2/ = 1000 .

Увеличение разрешающей способности микроскопа путём уменьшения длины волны привело к положительному результату. Микроскопы, использующие УФ - лучи, позволяют увеличить разрешающую способность примерно в два раза. Переход к микроскопии, использующей рентгеновские лучи, позволяет ещё более резко увеличить разрешающую способность. Однако отсутствие оптических линз для рентгеновского диапазона создаёт ряд трудностей в реализации этой идеи. Такие принципиальные трудности были преодолены после того, как в 1923 г. Луи де Бройлем была выдвинута гипотеза, согласно которой любой частице с массой m , движущейся со скоростью v , соответствует волна с длиной

 = h/mv ,

где h - постоянная Планка, равная 6.67*10-34 Дж с .

Скорость электрона можно выразить через ускоряющее напряжение:

Е = еU = mv 2/2

v = (2еU/m )1/2

 = h /(2mеU )1/2

Приближённые расчёты показывают, что волна, соответствующая электрону, ускоренному полем в 150 В, равна 0.1 нм, что на 3 порядка меньше длины волны видимого света. Поскольку электрону соответствует столь короткая волна, это наводит на мысль о возможности создания микроскопа, работающего с электронными пучками. Роль оптической системы могут выполнять соответствующим образом подобранные электрические и магнитные поля, сформированные электромагнитными линзами.

Принцип действия электронных микроскопов

В настоящее время различают просвечивающую электронную микроскопию (ПЭМ) и растровую электронную микроскопию (РЭМ). Данные для сравнения РЭМ, ПЭМ и световой микроскопии (СМ) приведены в таблице 1.

Табл. 1. Сравнительные характеристики световых и электронных микроскопов

Просвечивающий электронный микроскоп представляет собой вакуумную камеру, изготовленную в виде вертикально расположенной колонны (рис. 1). Вдоль центральной оси этой колонны сверху вниз внутри колонны расположены электронный прожектор, определенный набор электрических катушек с проводом - электрических магнитов, выполняющих роль электромагнитных линз для пучка электронов, проходящего вдоль центральной оси колонны до ее основания, и флуоресцирующего экрана, поверхность которого бомбардируют электроны пучка.

Рис.1. Просвечивающий электронный микроскоп JEM -200 CX

ПЭМ является фактическим аналогом светового микроскопа. Его схема показана на рис.2. Исследуемый образец располагается в области объективной линзы 5. Проекционная и промежуточная линзы выполняют функцию окуляра. Изображение формируется на флуоресцирующем экране.

Рис. 2. Схема просвечивающего электронного микроскопа:

1 - катод, 2 - управляющий электрод, 3 - анод, 4 - конденсорная линза, 5 - объектная линза, 6 - апертурная диафрагма, 7 - селекторная диафрагма, 8 - промежуточная линза, 9 - проекционная линза, 10 – экран

Объект АВ располагают обычно на микросетке. Проходя через объект, электроны рассеиваются в некоторый телесный угол, который ограничивается апертурой диафрагмой объектной линзы. Изображение объекта, формируемое объектной линзой (А’В’) увеличивается промежуточной (А’’В’’) и проекционной (А’’’В’’’) линзами. Контраст изображения обуславливается поглощением (амплитудный контраст) и рассеянием (фазовый контраст) электронов в объекте (рис. 3).

Рис. 3. Электронные изображения биологической ткани, полученные при различной степени увеличения. На первом изображении с увеличением в 170 раз видна графитовая микросетка, на которой располагают исследуемый объект

В ПЭМ объект исследования должен пропускать пучок электронов. Первостепенная задача исследователя - обеспечение двух условий: малой толщины образца и избирательного взаимодействия электронов с разными деталями образца. Микроскоп снабжается камерой, в объёме которой создаётся необходимый вакуум (10-5 - 10-6 Па). Ускоряющее напряжение, прикладываемое между катодом и анодом, находится в пределах от 20 до 200 кВ, что обеспечивает режим работы «на просвет». В РЭМ это напряжение значительно меньше (до 20 кВ). Весьма эффективно применение ПЭМ для анализа микроструктуры материалов, установление в ней нарушений, контроля правильности заполнения узлов кристаллической решётки, наличия пустот, дислокаций и т.д. (рис. 4).

Рис. 4. Двумерное электронное изображение кристалла Nb , полученное при 200 кэВ ускоряющего напряжения и увеличении в 6.000.000 раз. Черные точки соответствуют позициям атомов Nb , белые – каналам межатомного пространства

В отличие от ПЭМ растровая электронная микроскопия позволяет дефектоскопировать образцы практически любых размеров по толщине. В её основе лежат физические явления, наблюдающиеся при бомбардировке поверхности твёрдого тела пучком электронов с энергией до нескольких десятков килоэлектронвольт, разворачиваемым в двумерный растр на поверхности исследуемого образца. К таким явлениям относятся: эмиссия вторичных электронов (рис. 5); рентгеновское излучение; оптическое излучение (катодолюминесценция); образование отражённых электронов (рис. 6); наведение токов в объекте дефектоскопирования (рис. 7 а); поглощение электронов (рис. 7 б); электроны, прошедшие сквозь образец (рис. 7 в); образование объёмного заряда; образование термоволны при модуляции электронного пучка по амплитуде. Регистрация и последующее преобразование сигналов, вызванных вторичными эффектами, позволяет получить разнообразные по информативному содержанию "электронные" изображения объекта.

Рис. 6. Контроль дефектов изготовления интегральных схем по электронным изображениям, полученным в режиме контроля отраженных электроном при различных ускоряющих напряжениях и увеличении в 250 раз

Рис. 7. Электронные изображения, полученное в режимах контроля наведенных токов в кристалле интегральной схемы (а), поглощенных электронов (сквозного сопротивления) в пленке сплава четырех металлов Ti - Fe - Ni - Ag (б), электронов, прошедших сквозь тонкий слой каучука (в)

Если после бомбардировки образца электронным пучком измерить энергетическое распределение всех эмиттированных из него электронов в диапазоне энергий от 0 до Е0 (Е0 - энергия первичных бомбардирующих поверхность исследуемого образца электронов), то получится кривая, подобная изображённой на рис. 8. Высокоэнергетическая часть распределения (область I) имеет широкий максимум и соответствует отраженным электронам, меньшая часть которых имеет низкие энергии (область II). Увеличение числа эмиттированных электронов, которые образуют область III, происходит за счёт процесса вторичной электронной эмиссии .

Рис. 8. Энергетическое распределение электронов, эмиттированных из исследуемого образца после его бомбардировки первичным электронным пучком

Вторичные электроны возникают в результате взаимодействия между высокоэнергетичными электронами пучка и слабо связанными электронами проводимости. При взаимодействии между ними происходит передача электронам зоны проводимости лишь нескольких электронвольт энергии, но вполне достаточных для того, чтобы они покинули кристаллическую решётку. В состав вторичных электронов входят также электроны, возникающие в результате выбивания из внутренних оболочек атомов и Оже-электроны, возникающие в результате безизлучательной рекомбинации. Энергия этих электронов характеризуется энергией определённых электронных уровней конкретного атома.

В процессе неупругого рассеяния электронов пучка при взаимодействии его с исследуемым образцом может возникать рентгеновское излучение. Это происходит за счёт двух различных процессов:

· торможения электрона пучка в кулоновском поле атома, приводящего к возникновению непрерывного спектра электромагнитного излучения с энергией от нуля до энергии падающего электрона (в этот диапазон входит и энергия рентгеновских квантов);

· взаимодействия электрона пучка с электронами внутренних оболочек, приводящего к возникновению характеристического рентгеновского излучения (энергия испускаемого рентгеновского кванта характеризуется разностью энергий между чётко определёнными электронными уровнями).

Когда некоторые материалы, такие как диэлектрики и полупроводники, подвергаются электронной бомбардировке, то возникает длинноволновое электромагнитное излучение в ультрафиолетовой и видимой части спектра. Это излучение, известное как катодолюминесценция .

Для анализа рабочего состояния активных и пассивных элементов ИС представляет интерес режим наведённых токов . При сканировании электронным пучком поверхности кристалла ИС, подключенного к источнику питания, часть поглощённых в кристалле электронов превращается в свободные носители заряда и генерируют электрические сигналы, обнаруживаемые в цепи питания. Эти сигналы имеют максимальное своё значение при пересечении электронным пучком областей потенциальных барьеров на кристалле (p-n переходов), что позволяет их визуализировать на экране видеомонитора (рис. 7 а).

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 328
Бесплатно скачать Реферат: Электронная микроскопия