Реферат: Электронные ключи

Как видно, токи транзисторного ключа в режиме насыщения определяются внешними параметрами схемы и практически не зависят от характеристик-транзистора. Режиму насыщения соот­ветствует точка В на статических характеристиках.

Режим насыщения кремниевого транзистора определяется условием uкб = -Uотп При заданных коллекторном и базовом токах удобным для расчетов является критерий насыщен­ного состояния по току. Его можно установить, рассуждая так. Пропорциональная зависимость между токами Iб и Iк , справедливая для активного режима, сохраняется вплоть до отпирания коллекторного перехода. Следовательно, на границе активного режима и режима насыщения также имеет место соотношение где Iб гр - базо­вый ток, при котором транзистор входит в режим насыщения. Как было отмечено, дальнейшее увеличение базового тока не приводит к росту коллекторного тока. Таким образом, критерий насыщенного состояния транзистора можно записать в виде

(7.1)

Если в соотношение (7.1) подставить выражения для токов получим:

В реальных условиях работы транзисторного ключа напря­жения источников питания могут изменяться, имеет место также разброс сопротивлений резисторов и коэффициента передачи тока h21 э . Это может привести к невыполнению неравенства (7.1), выходу транзистора из режима насыщения и соответственно к изменению коллекторного тока и выходного напряжения. Для обеспечения устойчивого режима работы транзисторного ключа параметры его рассчитывают таким образом, чтобы неравенство (7.1) выполнялось при изменениях в некоторых пределах вхо­дящих в него величин.

Помехоустойчивость транзисторного ключа тем больше, чем выше коэффициент насыщения:

Хотя для повышения помехоустойчивости желательно увеличивать коэффициент насыщения, однако сле­дует помнить, что при этом растет время переключения транзис­торного ключа.

3. ВКЛЮЧЕНИЕ ТРАНЗИСТОРНОГО КЛЮЧА

Транзистор переходит из режима отсечки в режим насыщения и обратно не мгновенно, а в течение определенного времени. Эта инерционность биполярного транзистора обусловлена двумя ос­новными факторами: накоплением заряда неосновных носителей в базе и емкостями коллекторного Ск и эмиттерного Сэ перехо­дов. Кроме того, на длительность переходных процессов тран­зисторного ключа оказывает влияние емкость нагрузки Сн .

Расчет длительности переходных процессов в транзисторном ключе проводится методом заряда, базирующимся на том факте, что в базе объемный заряд неосновных носителей скомпенсиро­ван, т. е. база электрически нейтральна.

Метод заряда. Так как в базе (p-область) неосновными но­сителями являются электроны, то при uбэ > Uотп ток базы iб (t) определяет скорость накопления электронов dq/dt в ней (q — заряд неосновных носителей) и компенсирует их убывание q/t в результате рекомбинации (t — время жизни неосновных носителей в базе). Кроме того, ток базы идет на перезарядку ем­костей' Ск и Сэ при изменении напряжения на переходах. Следо­вательно,

(7.2)

Если емкостные токи коллекторного и эмиттерного переходов невелики, то уравнение (7.2) упрощается:

dq/dt + q/t = iб (t) (7.3)

В стационарном состоянии, когда dq/dt = 0,

q = tIб , (7.4)

т. е. избыточный заряд неосновных носителей в базе пропорцио­нален базовому току. Это соотношение справедливо не только в активном режиме, но и в режиме насыщения транзистора.

С помощью уравнений (7.2) или (7.3) можно определить объем­ный заряд неосновных носителей в базе в функции времени. Од­нако при расчете импульсных схем на транзисторах основной ин­терес представляет определение закона изменения коллекторно­го тока.

В активном режиме работы транзистора при условии, что рас­пределение концентрации неосновных носителей заряда в базе является линейным, имеет место соотношение, которое с извест­ным приближением дает связь между зарядом неосновных носителей в базе и коллекторным током транзистора:

(7.5)

Это соотношение в стационарном режиме справедливо с высокой точностью. Однако в переходном режиме, длительность которо­го соизмерима с временем распространения носителей вдоль базы, линейный характер распределения неосновных носителей в базе нарушается.

Решая уравнения (7.2) или (7.3) и используя соотношение (7.5), можно определить закон изменения коллекторного тока при заданном базовом токе. Преобразуем по Лапласу уравнение (7.3), поскольку это упрощает процедуру решения при различных начальных условиях:

(7.6)

где q(0) — начальное значение заряда неосновных носителей в базе; р — оператор Лапласа.

Задержка включения. Рассмотрим процесс включения тран­зисторного ключа при условии, что в момент времени /о на его входе напряжение скачком изменяется от Uб - до Uб + (рис. 7.5). В базовой цепи устанавливается ток . Хотя управляющее напряжение изменяется скачком, разность потенциалов между базой и эмиттером из-за наличия прежде все­го емкостей Сэ и Ск нарастает до значения Uотп при котором транзистор открывается, но не сразу, а в течение определенного времени. Таким образом, импульс коллекторного тока начина­ется в момент времени, т. е. с некоторой задержкой относи­тельно момента подачи отпирающего напряжения Интервал времени tзд = t1 – t0 определяет длительность стадии задерж­ки - время, в течение которого происходит перезарядка ем­костей Сэ и Ск . Так как в это время через транзистор протекают емкостные токи, то эквивалентная схема транзисторного ключа

Рис. 7 5. Переходные процессы в ключе ОЭ

Рис. 7.6. Эквивалент­ная схема ключа

на этапе задержки включает внешние резисторы и емкости пере­ходов (рис. 7.6).

В транзисторном ключе обычно Rб > Rк поэтому, пренебре­гая Rк получим цепь первого порядка, переходной процесс в которой определяется соотношением

где . Когда ем­кость нагрузки транзисторного ключа Сн соизмерима или боль­ше суммарной емкости переходов, . После подстановки получим

Стадия задержки заканчивается, когда поэтому

Формирование фронта. Когда в момент времени t1 эмиттерный переход открывается, начинается процесс нарастания коллек­торного тока, сопровождающийся снижением коллекторного на­пряжения. Коллекторный ток увеличивается до момента време­ни t2 , когда транзистор входит в режим насыщения. В интервале времени t1 …t2 . происходит формирование фронта импульса тока. Длительность фронта tф =t1 + t2 можно определить из уравне­ния (7.6). Так как начальный объемный заряд q(0) = 0, а

(7.9)

Подставив выражение (7.9) в (7.5), получим:

(7.10)

К-во Просмотров: 384
Бесплатно скачать Реферат: Электронные ключи