Реферат: Элементная база радиотехники

После триода появились многоэлектродные лампы: тетрод – с двумя сетками, пентод – с тремя сетками, октод – с четырьмя и пентагрид – с пятью сетками. Но в 50-е годы прошлого века начался закат ламповой техники. Появились полупроводниковые усилительные элементы. Они обладали намного меньшими размерами, чего требовала в то время развивающаяся военная техника и ЭВМ.

В 1947 г. появился первый точечный биполярный транзистор. Его разработали сотрудники фирмы BellTelephoneLaboratories, физики Вильям Шокли, Джон Бардин и Уолтер Х.Браттейн. В 1956 г они получили Нобелевскую премию по физике за исследования полупроводников и открытие транзисторного эффекта. Сразу вслед за изобретением точечного транзистора Шокли предложил структуру плоскостного транзистора, но он не был в состоянии проверить свою теорию работы этого прибора просто потому, что в то время еще не существовало путей создания плоскостного транзистора. Плоскостной транзистор появился только в начале 50-х годов.

Основой транзистора является полупроводниковый материал. Полупроводниками являются химические Элементы углерод, германий и кремний. Вначале в транзисторах использовался Германий, сейчас, в основном, кремний. Атомы и германия и кремния на внешней электронной оболочке содержат по четыре электрона, как показано ниже на рисунке. А должна быть заполнена эта оболочка восемью электронами. Поэтому атомы образуют кристаллическую решетку, в которой каждый атом “отдает в совместное пользование” свои четыре электрона соседним четырем атомам. И таким образом, каждый атом имеет на внешней оболочке по восьми электронам, движущимся по немыслимым орбитам.

Кристаллическая решетка чистого кремния

При низкой температуре эта структура устойчива, свободных носителей электрического заряда нет, и полупроводник ведет себя как изолятор. С повышением температуры некоторые из электронов начинают сходить со своих немыслимых орбит. И таким образом появляются свободные электроны. Чем выше температура, тем больше свободных электронов, тем выше проводимость полупроводника. А на орбите того атома, который покинул электрон, образовалось пустое место, недостаток электрона. Его назвали дыркой – виртуальной частицей с положительным зарядом


Образование электронно-дырочной пары Кристаллическая решетка полупроводника п -типа

Таким образом, в полупроводнике постоянно образуются и уничтожаются электронно-дырочные пары, которые и определяют проводимость полупроводника. Для того, чтобы нарушить равенство электронов и дырок, производят легирование добавление в малом количестве примесей, валентность которых отличается от четырех. Используются пятивалентные примеси: мышьяк, сурьма, фосфор, и трехвалентные: индий, галлий. Атом примеси занимает место атома кремния в кристаллической решетке. При этом образуется либо свободный электрон, как показано на рисунке при легировании фосфором, либо свободная дырка при легировании трехвалентными примесями. Эти свободные носители электричества, не связанные с электронно-дырочными парами, называются основными носителями . Если основными носителями являются электроны, то материал называется полупроводником п -типа. Если же основными носителями являются дырки, то р -типа.

Полупроводники

электромагнитная волна приемник транзистор

Рассмотрим, что произойдет если соединить полупроводники разных типов проводимости. В месте контакта образуется р-п переход. В полупроводнике р- типа дырки, находящиеся вблизи р-п перехода, движутся к полупроводнику п- типа, где есть свободные электроны. В свою очередь, электроны из полупроводника п -типа движутся через р-п переход в сторону полупроводника р -типа. Но далеко ни те ни другие основные носители пройти не смогут, так для каждого свободного электрона находится дырка, то есть пустое место в электронной оболочке атомов. И таким образом вблизи р-п перехода образуется тонкий слой полупроводника, в котором нет основных носителей и существуют только электронно-дырочные пары. Этот слой называется обедненным слоем.

+
+
+
+
+
+
+
+
+
п
р
Обедненный слой

Потенциальный

барьер

+
+
+
п
р
р-п переход Изменение потенциала

В обедненном слое нарушается электрическая нейтральность полупроводника. В полупроводнике р- типа в обедненном слое не хватает дырок, поэтому он заряжен отрицательно. А в полупроводнике п- типа в обедненном слое не хватает электронов, поэтому он заряжен положительно. Таким образом, в месте соединения полупроводников разного типа возникает потенциальный барьер, который не позволяет основным носителям преодолеть р-п переход. Величина потенциального барьера зависит от полупроводникового материала. Для германия он составляет 0,3 В, а для кремния – 0,7 В.

Рассмотрим, что происходит, когда к р-п переходу прикладывается напряжение от внешнего источника.

р-п переход смещен в прямом направлении р-п переход смещен в обратном направлении

Если “минус” источника соединен с полупроводником п- типа, а “плюс” – с полупроводником р -типа, то это приведет к появлению новых электронов и дырок и движению их к р-п переходу. Электроны и дырки проникают в обедненный слой и уменьшают его толщину. Если напряжение источника превышает потенциальный барьер, то обедненный слой перестает существовать, и основные носители свободно переходят границу соединения материалов. В этом случае говорят, что р-п переход смещен в прямом направлении.

Если поменять полярность источника, то есть подсоединить плюс источника к полупроводнику п- типа, а минус – к полупроводнику р- типа, то электроны и дырки будут удаляться от р-п перехода, и величина барьера увеличится. В этом случае говорят, что р-п переход смещен в обратном направлении.


Такие свойства р-п перехода позволяют использовать его в качестве детектора – диода с односторонней проводимостью.

Вольтамперная характеристика диода показывает, что полупроводниковый диод начинает пропускать ток, когда прикладываемое напряжение превышает потенциальный барьер. Если напряжение меньше потенциального барьера, то течет очень маленький ток, связанный с электронно-дырочными парами. Для германия это микроамперы, а для кремния – наноамперы.


Плоскостной транзистор п-р-п типа


Отмеченные свойства р-п перехода лежат в основе работы плоскостных транзисторов. В плоскостном транзисторе п-р-п типа коллектор и эмиттер являются полупроводниками п типа, а база полупроводником р типа. Транзистор содержит два р-п перехода: эмиттер-база и база-коллектор.

Если на базу не подается напряжения, то р-п переходы противодействуют перемещению основных носителей из полупрводника одного типа в полупроводник другого типа. Транзистор заперт. На эмиттерном переходе (эмиттер-база) возникает потенциальный барьер (0,7 В для кремния и 0,3 для германия). Коллекторный переход (база-коллектор) смещен в орбратном напрвлении, так как к полупроводнику п типа приложено положительное напряжение относительно полупроводника р типа. Распределение потенциала в окрестности базы для этого случая показано ниже.

На базу напряжение не подается На базу подается напряжение, превышающее потенциальный барьер

Если на базу подается напряжение, превышающее потенциальный барьер, то эмиттерный переход смещается в прямом направлении. Основные носители из эмиттера п типа (электроны) свободно переходят в базу и там под действием потенциала коллектора быстро переходят в коллектор, так как коллекторный переход для них является не тормозящим, а ускоряющим. Конечно, часть электронов, проходя через базу, может уничтожиться дырками. Но, во первых, базовый слой очень тонок (микрометры), а, во-вторых материал базы слабо легирован, то есть дырок много меньше, чем электронов.

Плоскостной транзистор, в отличие от лампы, является усилителем тока, поэтому основным параметром транзистора является коэффициент усиления по току μ = ΔI КI Б . Как правило μ близок к 100.

Заключение

Живые объекты излучают электромагнитные волны. Клетки, ткани и органы являются структурами с точными электрическими характеристиками. Движение зарядов в организме человека связано с метаболическими процессами, происходящими в организме. Огромное количество биохимических реакций сопровождается разнообразными частотными характеристиками собственного электромагнитного излучения.

Бурное развитие отраслей народного хозяйства привело к использованию во всех промышленных производствах, в медицине и в быту электромагнитных волн. Причем в ряде случаев человек оказывается подвержен их воздействию. Электромагнитные волны, взаимодействуя с тканями тела человека, вызывают определенные функциональные изменения. При интенсивном облучении эти изменения могут оказать вредное воздействие на организм человека.

Человек «приручает» электромагнитные волны, создает все более безопасные бытовые приборы, ведь знание природы воздействия электромагнитных волн на организм человека, норм допустимых облучений, методов контроля интенсивности излучений и средств защиты от них является совершенно необходимым для дальнейшего успешного их применения все в более новых отраслях науки и техники.

Список литературы

1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 437-440.

2. С.П. Бортников «Безопасность жизнедеятельности» учебно-методический комплекс, Ульяновск, 2004.

3. Т.А. Хван, П.А. Хван. Основы экологии. Серия "Учебники и учебные пособия". Ростов н/Д: "Феникс", 2003. – 256 с.

К-во Просмотров: 223
Бесплатно скачать Реферат: Элементная база радиотехники