Реферат: Элементы конструирования печатных плат

С уменьшением шага выводов особенно важно, чтобы разработчики печатных плат считались с необходимостью обеспечения технологичности их конструкций, правильно с этих позиций оценивали не только сборочные, но и производственные характеристики печатных плат, чтобы разработанные конструкции гарантировали наибольший выход и наименьшую себестоимость готовой продукции.

1.2 Непосредственный монтаж кристаллов на подложку

Потребности в уменьшении массы и габаритов конструкций электронной аппаратуры обусловили интерес к методам непосредственного монтажа кристаллов микросхем на плату: «кристалл на плате» – СОВ или многокристальные модули.

Кристаллы микросхем монтируют на подложку одним из четырех методов:

1. Термокомпрессионная микросварка – наиболее старый, наиболее гибкий и широко применяемый метод. Этим методом до сих пор изготавливают более 96% всех микросхем.

Присоединение кристаллов к выводам ленточного носителя или TAB. Этот метод используется для автоматического монтажа кристаллов с малым шагом выводов на промежуточный носитель. Кроме возможности автоматизации монтажа, он обеспечивает возможность предварительного тестирования кристаллов перед окончательной установкой его на монтажную подложку.

3. Присоединение перевернутого кристалла через шариковые выводы. Компактность и улучшенные электрические характеристики этого метода межсоединений способствуют его расширяющемуся применению.

4. Присоединение кристалла балочными выводами. В этом методе используют технологии термокомпрессионной и ультразвуковой микросварки балочных выводов к периферийным контактным площадкам на кристалле и, затем, – балочных выводов к монтажной подложке.


При оценке возможности использования этих методов, необходимо принимать во внимание разные температурные коэффициенты расширения кристаллов из кремния и монтажной подложки. Кроме прямого решения этой проблемы выбором соответствующего материала подложки, она может быть эффективно решена заливкой эпоксидной смолой, разделяющей кристалл и плату. Подобный прием позволяет выровнять деформации кристалла и подложки и, за счет этого, существенно улучшить надежность таких сборок.

1.3 Микрокорпуса

При непосредственной установке кристаллов на монтажные подложки не всегда представляется возможность предварительно убедиться в их правильной работе до их монтажа на подложку. К настоящему времени существует несколько технологий для решения этой проблемы. В зарубежной терминологии эта проблема имеет название – «заведомо исправный кристалл». Один из путей ее решения – использование микрокорпусов, размеры которых лишь ненамного превышают размеры кристалла, но выполняют функции защиты от внешней среды и перераспределяют выводы кристалла на матрицу выводов микрокорпуса. Применение микрокорпусов позволяет тестировать микросхему до установки ее на монтажную подложку. На микросхемах с программируемой логикой создается возможность программировать их пережиганием перемычек в соответствии с задуманной схемой. Типовой пример микрокорпусов – CSP-корпус.

Поскольку для некоторых CSP-корпусов шаг матричных выводов составляет 0,5 мм и менее, требуется использование специальных технологий производства печатных плат, позволяющих обеспечить разводку сигнальных цепей в узких пространствах между элементами монтажного поля.

Существующие технологии производства печатных плат способны обеспечить монтаж выводов бескорпусных микросхем, если он выполняется по технологии термокомпрессионной сварки или с использованием ленточных носителей. И, хотя такое решение переносит трудности защиты открытых кристаллов микросхем на корпусирование электронных модулей, оно все еще остается одним из наиболее эффективных методов монтажа бескорпусных микросхем.

При использовании корпусов с малым шагом матричных выводов ситуация усложняется тем, что сигнальные связи от внутренних выводов матрицы необходимо вывести между контактными площадками матрицы. При этом имеется возможность провести между контактными площадками один, максимум, два проводника. Поэтому, в большинстве случаев, проводники от внутренних выводов матрицы выводятся по внутренним слоям многослойных печатных плат.

Многослойные печатные платы, изготовленные традиционным методами маталлизиции сквозных отверстий, плохо приспособлены к монтажу микросхем с матричными выводами с шагом менее 8,0 мм. И, в то же время, уже созданы корпуса микросхем типа CSP с шагом матричных выводов 0,508 мм и 0,254 мм. Для монтажа таких компонентов к МПП добавляются специальные слои с глухими металлизированными отверстиями, на которых реализуется разводка цепей из-под микрокорпусов или из-под бескорпусных кристаллов микросхем.

Такие тонкие дополнительные специализированные слои, напрессовываются на МПП, после чего в них выполняются глухие металлизированные отверстия. Поэтому этот метод за рубежом получил названием «напрессованная на поверхность схема». И, хотя в России для этого метода пока нет установившегося термина, можно видеть, что в нем соединены метод металлизации сквозных отверстий и метод послойного наращивания. Значит, ему можно присвоить длинное название – «МПП с послойным наращиванием внешних слоев» или «МПП с глухими отверстиями», пока в русской среде специалистов не установится более лаконичное название.

1.4 Количество выводов и степень интеграции микросхем

При монтаже кристаллов на подложку корпуса и корпуса на монтажную подложку или при непосредственном монтаже кристалла на плату неизбежно увеличиваются используемые для этого площади. Это вызвано необходимостью выделения определенного физического пространства для размещения выводов. А число выводов подчиняется общей тенденцией их увеличения с увеличением интеграции микросхем:

где я – количество выводов, q – коэффициент связности микроэлементов в структуре микросхемы, N – степень интеграции микросхемы, R – показатель Рента.

В противоположность степени интеграции, этот эффект называют степенью дезинтеграции, которая оценивается отношением плотности микроэлементов, отнесенной к монтажной площади на плате с их плотностью размещения на кристалле. Например, если кристалл процессора имеет размер 10x10 мм, а монтажное поле его корпуса на плате занимает площадь 4000 мм, такое конструктивное исполнение системы межсоединений характеризуется дезинтеграцией с числом 10. Эта цифрой оценивается матрица из 800 выводов. Периферийное расположение такого количества выводов с шагом 0,4 мм занимает монтажное поле площадью 8000 мм, значит степень дезинтеграции такого конструктивного исполнения – 100.

Нужно заметить, что степень дезинтеграции растет по мере возрастания иерархического уровня конструкции: кристалл – микросхема – печатный узел – модуль – блок – … Например, дезинтеграция в блоке может достигать цифры 100 тыс.

Очевидно, что степени интеграции и дезинтеграции должны соответствовать техническому уровню развития производства. При стремлении выполнить конструкцию на предельных возможностях производства, стоимость изделия станет неоправданно высокой из-за большого объема отходов на брак. Надежность таких конструкций также не будет гарантирована. Если же в производство поступит изделие, спроектированное по низким проектным нормам, т.е. с большой степенью дезинтеграции, его большая материалоемкость, низкая фондоотдача также пагубно скажется на его себестоимости.


2. Координатная сетка

Положение печатного рисунка на плате регламентируется условной координатной сеткой – ортогональной сеткой, состоящей из параллельных осям X-Y линий, условно или фактически нанесенных на чертеж печатной платы. Расстояние между двумя ближайшими параллельными линиями называют шагом координатной сетки. Точки пересечения линий координатной сетки называют узлами. Узлы координатной сетки предназначены для определения местоположения монтажных и переходных отверстий, контактных площадок для монтажа поверхностно-монтируемых компонентов. Поэтому шаг координатной сетки печатной платы должен строго соответствовать шагу выводов радиоэлементов.

В отечественной практике используют шаг основной координатной сетки 2,5 мм. По мере уплотнения печатного монтажа используют вспомогательные координатные сетки, шаг которых получают делением или умножением шага основной координатной сетки на 2». Таким образом, получают ряд мелких шагов вспомогательных сеток: 0,625; 0,3125 мм и дополнительных шагов, получаемых путем сложения разных шагов, например: 2,5+0,625=3,125 или 0,625+0,31,25=0,9375 мм.

К-во Просмотров: 194
Бесплатно скачать Реферат: Элементы конструирования печатных плат