Реферат: Элементы теории вероятности

где mn (wi ) - число случайных экспериментов (из общего числа n про­изведенных случайных экспериментов), в которых зарегистрировано по­явление элементарного события wi . Соответственно для практического (приближенного) определения вероятностей pi предлагается брать отно­сительные частоты появления события в достаточно длинном ряду слу­чайных экспериментов.

Апостериорно-модельный подход к заданию вероятностей Р{wi }, от­вечающему конкретно исследуемому реальному комплексу условий, явля­ется в настоящее время, пожалуй, наиболее распространенным и наиболее практически удобным. Логика этого подхода следующая. С одной сторо­ны, в рамках априорного подхода, т. е. в рамках теоретического, умозри­тельного анализа возможных вариантов специфики гипотетичных реаль­ных комплексов условий разработан и исследован набор модельных веро­ятностных пространств (биномиальное, пуассоновское, нормальное, пока­зательное и т.п.). С другой стороны, исследователь располагает результатами ограниченного ряда случайных экспериментов. Далее с помощью специальных математико-статистических приемов исследователь как бы прила­живает гипотетичные модели вероятностных пространств к имеющимся у него результатам наблюдения (отражающим специфику изучаемой реаль­ной действительности) и оставляет для дальнейшего использования лишь ту модель или те модели, которые не противоречат этим результатам и в некотором смысле наилучшим образом им соответствуют.

Примеры стохастических зависимостей в экономике

Первая принципиальная идея, с которой встречается каждый изучающий экономист – идея о взаимосвязи между экономическими переменными. Формирующийся на рынке спрос на некоторый товар рассматривается как функция его цены; затраты, связанные с изгото­влением какого-либо продукта, предполагаются зависящими от объема производства; потребительские расходы могут быть функцией дохода ит.д. Все это примеры связей между двумя переменными, одна из кото­рых (спрос на товар, производственные затраты, потребительские расхо­ды) играет роль объясняемой переменной (или результирующего пока­зателя), а другие интерпретируются как объясняющие переменные (или факторы-аргументы). Однако для большей реалистичности в каждое та­кое соотношение приходится вводить несколько объясняющих перемен­ных и остаточную случайную составляющую, отражающую влияние на результирующий показатель всех неучтенных факторов. Спрос на товар можно рассматривать как функцию его цены, потребительского дохода и цен на конкурирующие и дополняющие товары; производственные за­траты будут зависеть от объема производства, от его динамики и от цен на основные производственные ресурсы; потребительские расходы мож­но определить как функцию дохода, ликвидных активов и предыдущего уровня потребления. При этом участвующая в каждом из этих соотноше­ний случайная составляющая, отражающая влияние на анализируемый результирующий показатель всех неучтенных факторов, обусловливает стохастический характер зависимости, а именно: даже зафиксировав на определенных уровнях значения объясняющих переменных, скажем, це­ны на сам товар и на конкурирующие с ним или дополняющие товары, а также потребительский доход, мы не можем ожидать, что тем самым однозначно определяете спрос на этот товар. Другими словами, переходя в своих наблюдениях спроса от одного временного или пространственного такта к другому, мы обнаружим случайное варьирование величины спроса около некоторого уровня даже при сохранении значений всех объясняю­щих переменных неизменными.

В прикладном статистическом анализе анализируются различные ва­рианты формализации понятия стохастической зависимости между результирующим показателем у и объясняющими переменными х(1) , х (2) ,…, х (р) .

Наиболее распространенной в эконометрических приложениях формой представления стохастической зависимости является аддитивная линей­ная форма, которая и будет главным предметом исследования в нашем изложении:

(5)

Здесь yt - значение результирующей (объясняемой) переменной, измерен­ное в t-u временном (или пространственном) такте, х t (1) , х t (2) х t (р) - значения участвующих в соотношении объясняющих переменных, полу­ченные в том же t-м измерении, θ1 , θ2 ,..., θ t - некоторые параметры (как правило, не известные до проведения соответствующего статистическо­го анализа), δ t - случайная составляющая, характеризующая разницу между модельный и наблюденным значениями анализируемой результи­рующей переменной, зафиксированную в t-м измерении. Под модельный значением результирующей переменной ỹt здесь и в дальнейшем мы бу­дем понимать ее значение, восстановленное по заданным величинам объ­ясняющих переменных при условии, что коэффициенты θ 1 , θ 2 ,..., θ p нам известны, т.е.

(6)

При такой интерпретации модельного значения результирующей пе­ременной случайную составляющую можно интерпретировать как слу­чайную ошибку прогноза у по заданным значениям х (1) , х (2) , х (р) , причем, чтобы исключить систематическую ошибку в оценке yt по ỹt , обычно полагают, что среднее значение случайной составляю­щей t при всех значениях t равно нулю (т.е. Еδ t =0). Очевидно, чем больше информации заключено в значениях объясняющих переменных х t (1) , х t (2) ,…, х t (р) относительно величины у, тем надежнее будет прогноз и тем меньше будет ошибка прогноза δ. Малость случайной величины - это значит, что ее значения сосредоточены в окрестности нуля с малой дисперсией.

Следующий шаг в развитии экономических теорий состоит в группи­ровке отдельных соотношений в модель. Всякая математическая модель является лишь упрощенным формализованным представлением реально­го объекта (явления, процесса), и искусство ее построения состоит в том, чтобы совместить как можно большую лаконичность параметризации мо­дели с достаточной адекватностью описания именно тех сторон моделиру­емой реальности, которые интересуют исследователя. Количество связей, включаемых в экономическую модель, зависит от условий, при которых эта модель конструируется, и от подробности объяснения, к которой мы стремимся. Например, традиционная модель спроса и предложения долж­на объяснять соотношения между ценой и объемом выпуска, характерные для некоторого определенного рынка. Она содержит три уравнения, а именно: уравнение спроса, уравнение предложения и уравнение реакции рынка. В эти уравнения, помимо интересующих нас объема выпуска и цены, будут входить и другие переменные; так, например, в уравнение спроса войдет потребительский доход, а в уравнение предложения - цена. Объяснение, достигнутое с помощью такой модели, обусловлено значени­ями некоторых «внешних» по отношению к модели переменных и в этом смысле модель является неполной, или условной. Более претенциозные модели содержат гораздо больше уравнений и с их помощью пытаются отразить поведение существенно большего числа переменных; однако и они остаются условными, поскольку тоже содержат переменные, не опре­деляемые или не объясняемые моделью.

Все экономические модели, независимо от того, относятся они ко все­му хозяйству или к его элементам (т. е. к макроэкономике, отрасли, фирме или рынку), имеют некоторые общие особенности. Во-первых, они осно­ваны на предположении, что поведение экономических переменных опре­деляется с помощью совместных и одновременных операций с некоторым числом экономических соотношений. Во-вторых, принимается гипотеза, в силу которой модель, допуская упрощение сложной действительности, тем не менее улавливает главные характеристики изучаемого объекта. В-третьих, создатель модели полагает, что на основе достигнутого с ее помощью понимания реальной системы удастся предсказать ее будущее движение и, возможно, управлять им в целях улучшения экономического благосостояния.

Чтобы проиллюстрировать сказанное и наметить пути для выяснения специфической роли эконометрики, рассмотрим пример весьма общей и приближенной макромодели.

Пример1:

Предположим, что экономист-теоретик сформули­ровал следующие положения:

• потребление есть возрастающая функция от имеющегося в наличии дохода, но возрастающая, видимо, медленнее, чем рост дохода;

• объем инвестиций есть возрастающая функция национального дохода и убывающая функция характеристики государственного регулирова­ния (например, нормы процента);

• национальный доход есть сумма потребительских, инвестиционных и государственных закупок товаров и услуг.

Наша первая задача - перевести эти положения на математический язык. И тут мы немедленно сталкиваемся с многообразием открываю­щихся перед нами возможных способов удовлетворения сформулирован­ным априорным требованиям теоретика. Какие соотношения выбрать между переменными - линейные или нелинейные? Если остановиться на нелинейных, то какими они должны быть - логарифмическими, поли­номиальными или какими-либо еще? Даже определив форму конкретного соотношения, мы оставляем еще нерешенной проблему выбора для раз­личных уравнений запаздываний по времени. Будут ли, например, ин­вестиции текущего периода реагировать только на национальный доход, произведенный в последнем периоде, или же на них скажется динамика не скольких предыдущих периодов? Обычный выход из этих трудностей со­стоит в выборе при первоначальном анализе наиболее простой из возмож­ных форм этих соотношений. Тогда появляется возможность записать на основе указанных выше положений следующую линейную относительно анализируемых переменных и аддитивную относительно случайных со­ставляющих модель:

где априорные ограничения выражены неравенствами

Эти три соотношения вместе с ограничениями образуют модель. В ней уt (1) обозначает потребление, у t (2) , - инвестиции, у t (3) - национальный до­ход, х t (1) - подоходный налог, х t (2) - норму процента как инструмент государственного регулирования, хt (3) - государственные закупки това­ров и услуг, измеренные в «момент времени» t.

Присутствие в уравнениях (6а) и (6б) «остаточных» случайных составляющих δt (1) и δt (2) обусловлено необходимостью учесть влияние со­ответственно на у t (1) и у t (2) ряда неучтенных факторов. Действительно, нереалистично ожидать, что величина потребления уt (1) будет однозначно определяться уровнями национального дохода (у t (3) ) и подоходного налога (хt (1) ); аналогично величина инвестиций у t (2) зависит, очевидно, не только от достигнутого в предыдущий год уровня национального дохода (у t -1 (3) ) и от величины нормы процента (х t (2) ), но и от ряда не учтенных в уравнении ( 6б ) факторов. Полученная модель содержит два уравнения, объясняющие поведение потребителей и инвесторов, и одно тождество. Модель сформулирована для дискретных периодов времени и имеет запаздывание (лаг) в один период для отражения воздействия национального дохода на инвестиции.

Этот пример объясняет общие черты од­ного из важнейших этапов эконометрического моделирования, в процессе которого исследователь математически формализует отдельные положе­ния экономической теории и объединяет их в систему. В дальнейшем мы используем этот пример для пояснения ряда основных понятий экономе­трического моделирования.


Проверка ряда гипотез о свойствах распределения вероятностей для случайной компоненты как один из этапов эконометрического исследования

По своему назначению и характеру решаемых задач статистические критерии чрезвычайно разнообразны. Однако их объединяет общность логической схемы, по которой они строятся. Коротко эту логическую схему можно описать так.

1.Выдвигается гипотеза Н0 .

Задаются величиной так называемого уровня значимости критерия
ά. Дело в том, что всякое статистическое решение, т. е. решение, прини­маемое на основании ограниченного ряда наблюдений, неизбежно сопрово­ждается некоторой, хотя, возможно, может и очень малой, вероятностью ошибочного заключения как в ту, так и в другую сторону. Скажем, в какой-то небольшой доле случаев а гипотеза Н0 может оказаться отверг­нутой, в то время как на самом деле она является справедливой, или, наоборот, в какой-то небольшой доле случаев β мы можем принять нашу гипотезу, в то время как на самом деле она ошибочна, а справедливым оказывается некоторое конкурирующее с ней предположение - альтер­нативная гипотеза Н1. При фиксированном объеме выборочных данных величину вероятности одной из этих ошибок мы можем выбирать по сво­ему усмотрению. Если же объем выборки можно как угодно увеличивать, то имеется принципиальная возможность добиваться как угодно малых вероятностей обеих ошибок ά и β при любом фиксированном конкуриру­ющем предположительном утверждении Н1. В частности, при фиксиро­ванном объеме выборки обычно задаются величиной а вероятности оши­бочного отвержения проверяемой гипотезы Н0 , которую часто называют «основной» или «нулевой». Эту вероятность ошибочного отклонения «нулевой» гипотезы принято называть уровнем значимости или разме­ром критерия. Выбор величины уровня значимости а зависит от сопо­ставления потерь, которые мы понесем в случае ошибочных заключений в ту или иную сторону: чем весомее для нас потери от ошибочного отвержения высказанной гипотезы Н0 , тем меньшей выбирается величина ά.

3. Задаются некоторой функцией от результатов наблюдения (крити­ческой статистикой) γ( n ) = γ (х1, х2,…, х3). Эта критическая стати­стика γ( n ) , как и всякая функция от результатов наблюдения, сама явля­ется случайной величиной и в предположении справедливости гипотезы Н0 подчинена некоторому хорошо изученному (затабулированному) закону распределения с плотностью f γ( n ) (u).

4.Из таблиц распределения f γ( n ) (u) находятся 100(1 - ά/2)%-ная точка γmin ά/2 и 100 ά/2%-ная точка γmax ά/2, разделяющие всю область мыслимых зна­чений случайной величины γ( n ) на три части: область неправдоподобно малых (I), неправдоподобно больших (III) и естественных или правдопо­добных (в условиях справедливости гипотезы Н0 ) значений (II) (рис.1). В тех случаях, когда основную опасность для нашего утверждения пред­ставляют только односторонние отклонения, т.е. только «слишком ма­ленькие» или только «слишком большие» значения критической стати­стики γ( n ) находят лишь одну процентную точку: либо 100(1 -ά) %- ную точку γmin ά , которая будет разделять весь диапазон значений γ( n ) на две части: область неправдоподобно малых и область правдоподобных зна­чений; либо 100 ά %-ную точку γ( max ) ά , она будет разделять весь диапазон значений γ( n ) на область неправдоподобно больших и область правдопо­добных значений.

К-во Просмотров: 591
Бесплатно скачать Реферат: Элементы теории вероятности