Реферат: Эмбриональные стволовые клетки в изучении функции генов

Сообщение о получении культуры ЭС клеток мыши было сделано одновременно в двух работах в 1981 г.. В настоящее время ЭС клетки подразделяют на три типа.

1. Клетки, изолированные из внутренней клеточной массы бластоцисты млекопитающих, именно эти клетки принято называть эмбриональными стволовыми клетками.

2. Клетки эмбриональных карцином.

3. Первичные половые клетки зародыша.

На рис. представлена общепринятая в настоящее время схема получения ЭС клеток и их использование для получения химерных животных. В последние годы ЭС клетки используются в различных направлениях исследований.

Кроме экспериментов по получению химерных животных и направленному изменению генов с целью изучения их функций в процессе развития и на уровне взрослого организма, ЭС клетки используются в экспериментах по клонированию животных и изучению начальных стадий эмбрионального развития invitro. Большой интерес в последние годы вызывает направление, связанное с изучением путей направленной дифференцировки ЭС и стволовых клеток млекопитающих и, что особенно важно человека, в определенные типы клеток invitro. Способность управлять этими процессами позволит в перспективе использовать такие клетки в заместительной терапии различных тяжелых заболеваний человека, таких как нейродегенеративные, онкологические и др.

ЭС клетки обладают высокой пролиферативной активностью и способностью в течение длительного времени в культуре поддерживаться в недифференцированном состоянии. Для сохранения недифференцированного фенотипа ЭС клеток в культуре требуется наличие фидерного слоя, который может быть представлен первичными эмбриональными фибробластами или перевиваемыми фибробластами мыши линии STO.

На рис. показан рост ЭС клеток на фидерном слое эмбриональных фибробластов мыши. Другой метод предупреждения дифференцировки ЭС клеток включает добавление в культуральную среду в отсутствие фидера LIF, который представляет собой гемопоэтический регулятор, индуцирующий дифференцировку клеток миелоидной лейкемии линии Ml. Успешно используются и ряд других цитокинов для сохранения недифференцированного состояния ЭС клеток: интерлейкин-6, онкостатин, цилиарный нейротрофический фактор. В качестве методических приемов предупреждения дифференцировки ЭС клеток используются: добавление в среду LIF в присутствии фидерного слоя, фидерные клетки, трансформированные рекомбинантным вектором и экспрессирующие LIF, и применение рекомбинантного LIF в отсутствие фидерного слоя.

Все описанные линии ЭС клеток мыши сходны по своим морфологическим характеристикам. Клетки имеют крупное ядро, содержащее преимущественно эухроматин и несколько ядрышек. Для них свойственно высокое ядерно-цитоплазматическое отношение: цитоплазма представлена узким ободком, окружающим ядро. Клеточный цикл 18—20 ч, П,-фаза очень короткая. Кариотипический анализ 35 линий ЭС клеток показал, что 25 из них имеют кариотип ХУ, а остальные ХО и XX. Авторы полагают, что ЭС клетки предпочтительней образуются из клеток с мужским кариотипом, поскольку вторая Х-хромосома может явиться дестабилизатором плюрипотентности. В основном все ЭС клетки имеют нормальный кариотип 2п = 40, изменения в кариотипе могут приводить к потере плюрипотентности.


Схема получения ЭС клеток и их использование при изучении процессов направленной дифференцировки в системах invitroи invivo, а также при создании трансгенных животных

Особенностью ЭС клеток является высокая активность эндогенной щелочной фосфатазы. Методом количественного анализа было установлено, что активность эндогенной щелочной фосфатазы стволовых клеток тератокарцином, внутренней клеточной массы бластоцисты, эпибласта 5-6-дневного эмбриона, первичных половых клеток в 10 раз превышает таковую у дифференцированных соматических клеток. Для ЭС клеток характерен также высокий уровень теломеразной активности, который коррелирует со степенью недифференцированности ЭС клеток. Сохранение недифферен цированного фенотипа ЭС клеток в культуре может быть подтверждено использованием антител к специфическим поверхностным антигенам ЭС, таких как ЕСМА-7, SSEA-1.


Основные направления исследований, в которых в настоящее время используются эмбриональные стволовые клетки млекопитающих

При определенных условиях культивирования ЭС клетки формируют эмбриоидные тела, которые представляют собой зачатки эндодермы, эктодермы и мезодермы, напоминая постимплантационное эмбриональное развитие. Если эмбриоидные тела прикрепляются к субстрату, то клетки, формирующие внутренние слои таких тел, способны в дальнейшем дифференцироваться в широкий спектор тканей, такие как мышечная, нервная, эпителиальная и др. Способность ЭС клеток к дифференцировке invitroиспользуется как модель для исследования процессов клеточной дифференцировки в разные типы тканей.

После инъекции ЭС клеток в бластоцисты они способны участвовать в образовании всех тканей, включая и линии зародышевых клеток химерного организма. Способность ЭС клеток дифференцироваться invivoоценивается по частоте химер и степени колонизации тканей химерного потомства, а также по частоте генеративных химер. Это свойство клеток в сочетании с методом гомологичной рекомбинации, которая позволяет направленно изменять геном ЭС клеток, дает возможность создавать трансгенных животных с заданным генотипом.

В 1982 г. впервые было показано, что соматические клетки млекопитающих обладают ферментативным механизмом, способным осуществлять гомологичную рекомбинацию между хромосомной и экзогенной ДНК, введенной в соматические клетки. Частота гомологичной рекомбинации достаточно низкая и в зависимости от локуса может быть от 10-3 до 10-7 . Существует две возможности для гомологичной рекомбинации между экзогенной и геномной последовательностями ДНК: замещение и внедрение. В случае замещения происходит двойной кроссинговер между гомологичными последовательностями вектора и генома, в случае внедрения происходит простой кроссинговер. Замещение приводит к инактивации гена, т.е. к его "нокауту".

В первых экспериментах на ЭС клетках для таргетинга был избран ген hprt. Ген hprtлокализован на Х-хромосоме, поэтому мужские ЭС клетки гемизиготны по hprtи достаточно инактивации только одной копии гена для получения селективного фенотипа. Hprtмутанты могут расти в среде, содержащей аналог пурина, 6-тиогуанин, тогда как клетки, имеющие нормальный фермент, на этой среде не растут. Этими авторами впервые был сконструирован вектор, в котором бактериальный ген пео, обеспечивающий устойчивость к антибиотику G418, вставлен в восьмой экзон клонированного фрагмента гена hprt. Двойная резистентность клеток свидетельствует о гомологичной рекомбинации, приводящей к разрушению гена. Было показано, что одна гомологичная рекомбинация происходит на 1000 случайных интеграции. В данной работе сам таргетируемый ген являлся селективным маркером. Для таргетирования неселективных генов был разработан метод позитивно-негативной селекции. Вектор для таргетинга содержит позитивный селективный маркер и негативный маркер - ген тимидинкиназы вируса герпеса HSV, которые расположены в разных местах вектора и каждый имеет свой промотор. Гомологичная рекомбинация с таргетированным геном приводит к встраиванию гена пео и элиминации гена tk, а негомологичная рекомбинация к встраиванию в хромосому обоих маркеров. Селекция гомологичных рекомбинатов проводится на среде, содержащей G418 и противовирусный препарат ганцикловир. Ганцикловир способен фосфорилироваться герпесной тимидинкиназой и при последующем встраивании в ДНК при репликации приводит к гибели клеток, экспрессирующих эту тимидинкиназу. Ген tkприсутствует в клетках при случайном встраивании вектора и отсутствует в клетках, претерпевших гомологичную рекомбинацию. Таким образом последние селектируются, будучи пео- и ганцикловиррезистентными, тогда как клетки, включившие вектор путем случайной интеграции, будут иеорезистентны, но ганцикловир чувствительны. Другим геном, обеспечивающим отрицательную селекцию, является фрагмент гена дифтерийного токсина, кодирующего его Б-цепь. Продукт этого гена токсичен для эукариотических клеток за счет ингибирования синтеза белка. Если ген ДТ-А встраивается в геном вместе с вектором и экспрессируется, то происходит гибель клетки.

Существует еще ряд подходов для выявления клонов ЭС клеток. Более подробную информацию об этих подходах можно найти в соответствующем обзоре. Одним из важных факторов, влияющих на частоту гомологичной рекомбинации, является степень гомологии между хромосомной и экзогенной ДНК. В основном все линии ЭС клеток, которые используются для таргетинга, выделены из линии мышей 129Sv. В связи с этим в работах по гомологичной рекомбинации вектора конструируют на базе генов, клонированных из банка генов этих линий мышей.

Использование ЭС клеток в сочетании с методом гомологичной рекомбинации открыло новые возможности для направленного мутагенеза. В основном, в большинстве работ получены мыши, у которых в результате мутации произошло выключение изучаемых генов. Анализ мышей, гомозиготных по Аш-аллелям, выявил несколько типов фенотипического проявления индуцированных мутаций:

1. Летальный эффект в эмбриогенезе или сразу после рождения.

2. Нарушение развития, функций, морфологии различных органов и гибель до наступления половой зрелости.

3. Нормальное развитие, жизнеспособность, плодовитость, отсутствие отклонений от нормы.

Например, в случае эмбриональных леталей происходит инактивация таких генов, как: nfl, Rb, N-туе, GAP, c-jun, c-myb. Гибель после рождения наблюдается при выключении следующих генов; c-abl, BDNF, trk, N-myc, TGF-3. Инактивация генов: CNTF, Dlx-2, FNAR-1, Ki-ras, c-mos, AT-2 приводит к нарушению развития, функций и морфологии разных органов. Нормальное развитие без изменения жизнеспособности, плодовитости наблюдали при инактивации таких генов, как: ароЕ, N-ras, MyoD, pim-1, c-fos. Очевидно, в этих случаях функции определенных генов могут выполняться другими родственными генами.

Стратегия генного таргетинга позволяет изучать функции отдельных генов как в развитии, так и во взрослом состоянии и моделировать на животных наследственные аномалии, встречающиеся у человека, с целью исследования их патогенеза и фенотипического проявления.

В настоящее время методы выделения ЭС клеток разработаны для разных видов животных: свиньи, овцы, коровы, норки, кролика и хомячка. В 1998 г. появилось два сообщения о выделении ЭС клеток человека из бластоцист и из первичных половых клеток зародыша. Несмотря на широкое распространение линий ЭС клеток и их интенсивное использование в экспериментах, остается еще достаточно много вопросов по вопросам их культивирования и дифференцировки. В настоящей работе представлены результаты экспериментов по морфологической характеристике начальных стадий эмбрионального развития, влиянию продуктов некоторых генов на пролиферацию и дифференцировку этих клеток в культуре, а также данные по таргетингу гена, кодирующего фактор роста фибробластов.


Характеристика эмбриональных стволовых клеток мыши

Отсутствие экспериментальных подтверждений бессмертности ЭС клеток и сложность их культивирования послужили основанием для проведения исследований по выявлению и поддержанию плюрипотентных свойств, отличающих эмбриональные клетки от соматических клеток культуры тканей. В настоящей работе были использованы две линии ЭС клеток мыши D3 и R1, обе линии выделены из бластоцист линии мышей 129/Sv. Одним из основных критериев плюрипотентности ЭС клеток принято считать форму колоний. Однако этот показатель во многом носит условный характер. По форме колоний иногда трудно отличить истинно эмбриональные клетки от клеток, спонтанно трансформированных в эмбриональную карциному. При фидерном способе культивирование формируются монослойные колонии округлой или удлиненной формы, с четко выраженными краями по периферии. Дифференцировка ЭС клеток приводит к морфологической гетерогенности и появлению колоний с неровными краями и тенденцией к вертикальному росту. Исследования ультраструктуры ЭС клеток показали, что клетки имеют относительно крупное ядро, содержащее преимущественно эухроматин, одно или два ядрышка, в которых доминируют гранулярные компоненты. В отличие от общепринятых представлений о том, что ЭС клетки лишены большинства органелл, в их цитоплазме были обнаружены многочисленные свободные рибосомы, шероховатый эндоплазматический ретикулум представлен единичными цистернами, что свидетельствует о низком уровне синтетической активности, комплекс Гольджи, около которого располагались 1-2 центриоли, митохондрии и многочисленные лизосомы.


Ультраструктура ЭС клетки. Х5800. Видно крупное ядро клетки, а также эндоплазматический ретикулум и митохондрии

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 141
Бесплатно скачать Реферат: Эмбриональные стволовые клетки в изучении функции генов