Реферат: Эмульсии и эмульгаторы
10
14
Концепция температуры инверсии фаз
Физико-химические свойства неионных ПАВ с полиоксиэтиленовыми цепями сильно зависят от температуры. Одно и то же ПАВ может стабилизировать эмульсии с водой в качестве дисперсионной среды при низких температурах и с маслом в качестве дисперсионной среды при высоких температурах. Концепция, в основе которой лежит температура инверсии фаз, определила более количественный подход для оценки эмульсионных систем, стабилизированных ПАВ. Принята следующая процедура для определения ТИФ: эмульсию масла в воде, содержащей -5% неионного ПАВ, встряхивают при повышении температуры. Температуру, при которой происходит инверсия фаз и эмульсия «масло в воде» переходит в эмульсию «вода в масле» определяют как ТИФ системы. Инверсию фаз можно легко определить по резкому падению электропроводности, когда эмульсия с водной дисперсионной средой трансформируется в эмульсию с масляной дисперсионной средой.
В лабораторных условиях ТИФ определяют, как правило, используя модельные неионные ПАВ с узким гомологическим распределением. В связи с этим важно заметить, что ТИФ такого НПАВ отличается от ТИФ технических НПАВ с тем же средним числом этоксилирования. Разница особенно велика для НПАВ с относительно короткими полиоксиэтиленовыми цепями. Это объясняется тем, что в составе ПАВ с широким гомологическим распределением дифильные молекулы с короткими полиоксиэтиленовыми цепями преимущественно растворяются в масляной фазе, а фракции с длинными полиоксиэтиленовыми цепями в значительной мере растворяются в водной фазе. Обычно растворимость в масляной фазе больше, чем в водной фазе, поэтому большая доля ПАВ «потеряется» в масляной фазе, а ПАВ, адсорбированное на межфазной поверхности, окажется более гидрофильным, чем «усредненное ПАВ», введенное в систему. Следовательно, ТИФ будет выше, чем при отсутствии такого фракционирования. Распределение между водной и масляной фазами происходит и для индивидуального поверхностно-активного гомолога, но это не влияет на температуру инверсии фаз, поскольку во всех фазах — в водной, масляной и на границе раздела фаз — присутствуют одни и те же молекулы.
В то время как число ГЛБ является характеристикой свойств изолированной молекулы ПАВ, ТИФ характеризует свойства эмульсии, в которой гидрофиль-но-липофильные свойства неионного поверхностно-активного вещества, использованного в качестве эмульгатора, полностью сбалансированы. Безусловно, между ТИФ и числами ГЛБ имеется корреляция. Увеличение длины полиок-сиэтиленовой цепи в неионных поверхностно-активных веществах приводит к увеличению чисел ГЛБ и увеличению ТИФ. Другие факторы, влияющие на ТИФ, таковы.
Рис. 8. Для технических этоксилированных спиртов характерна более высокая температура инверсии фаз, чем для индивидуального ПАВ с той же средней степенью этоксилирования. Разница в ТИФ связана с распределением гидрофильных и гидрофобных фракций в масле и воде соответственно. Большая доля ПАВ переходит в масло, а не в воду
1) Природа масла. Чем менее полярно масло, тем выше ТИФ. Например, у эток-силированного нонилфенола в системе бензол-вода при соотношении жидких фаз 1:1 ТИФ равна ~ 20 °С. При замене бензола на циклогексан ТИФ возрастает до 70 °С, при замене масляной фазы на гексадекан ТИФ превышает 100 °С.
2) Концентрация электролита и тип соли. ТИФ понижается при добавлении большинства солей. Замена дистиллированной воды на 5%-ный раствор хлорида натрия приводит к понижению ТИФ почти на 10 °С. Зависимость ТИФ от концентрации и типа соли аналогична зависимости, характерной для точки помутнения.
3) Добавки в масляной фазе. Добавки, приводящие к увеличению полярности масла, например жирные кислоты или спирты, заметно снижают ТИФ. Добавки, хорошо растворимые в воде, например этанол и изопропанол, оказывают на ТИФ противоположное влияние.
4) Соотношение объемов масла и воды. Можно считать, что точка инверсии фаз индивидуального НПАВ не зависит от соотношения объемов масла и воды в интервале от 0.2 до 0.8. В случае технических поверхностно-активных веществ, которые содержат гомологи с разными числами ГЛБ, соотношение объемов жидких фаз влияет на распределение компонентов смеси ПАВ между жидкими фазами, приводя к увеличению ТИФ с увеличением соотношения объемов масло/вода. Если измерить ТИФ при различных соотношениях объемов жидких фаз и экстраполировать эту зависимость к нулевому соотношению объемов масла/вода, то полученное значение в первом приближении соответствует точке помутнения поверхностно-активного вещества.
Эти эффекты находятся в полном согласии с правилом Банкрофта, т. е. с тем, что растворимость эмульгатора контролирует процесс эмульгирования. Так, добавление полярного, растворимого в масле органического компонента приводит к увеличению полярности масляной фазы, что в свою очередь приводит к увеличению растворимости в масле поверхностно-активного вещества. Правило Банкрофта утверждает, что в этих условиях преимущественно образуются эмульсии типа «вода в масле». Для получения сбалансированной системы необходимо усилить растворимость поверхностно-активного вещества в воде, что достигается понижением температуры, поскольку НПАВ, содержащие полиоксиэтилено-вые цепи, сильнее растворяются в воде при пониженных температурах. Введение добавок понижает ТИФ.
Рис. 9. Влияние полярности масла, концентрации электролита и температуры на кривизну межфазной границы масло-вода
Подбор эмульгатора методом определения ТИФ
Межфазное натяжение на поверхности масло-вода минимально при температуре инверсии фаз. Эмульсии, образующиеся при этой температуре, тонкодисперсные, но неустойчивые по отношению к коа-лесценции. Пользуясь методом определения ТИФ, для эмульгирования выбирают такой эмульгатор, который имеет точку ТИФ примерно на 400 C выше температуры хранения готовой эмульсии, полученной при одинаковых объемах жидких фаз и 5%-ном содержании НПАВ. Эмульгирование проводят при температуре на 2-40 C ниже ТИФ, а затем эмульсию быстро охлаждают до температуры хранения, при которой коалесценция протекает с низкой скоростью. Эффективный способ охлаждения состоит в том, что эмульгирование проводят в относительно небольшом количеством воды, а затем добавляют холодную воду.
Можно также получить эмульсию при температуре немного выше ТИФ, при этом образуется эмульсия «вода в масле». Затем добавляют холодную воду, что приводит к инверсии фаз с образованием эмульсии «масло в воде». Этот способ обычно используют при эмульгировании очень вязких масел, например алкидных и других смол, однако капли в эмульсиях при этом не такие маленькие, как при использовании метода ТИФ без инверсии фаз.
Различные типы неионных ПАВ как эмульгаторы
Традиционно в качестве эмульгаторов использовали этоксилированные алкил-фенолы. Из-за пристального внимания к вопросам биоразлагаемости и токсичности в водной среде эти НПАВ были вытеснены этоксилированными спиртами с примерно такими же числами ГЛБ. Иногда такая замена не является адекватной, что можно объяснить различием структур гидрофобных частей НПАВ этих двух типов. Гидрофобный радикал в этоксилированных спиртах обычно представлен неразветвленными углеводородными цепями алифатических углеводородов, а этоксилированные алкилфенолы содержат объемный и сильно поляризующийся гидрофобный «хвост».
Адсорбция поверхностно-активного вещества на межфазной границе определяется его молекулярной структурой. По сравнению с размером молекул ПАВ межфазную границу масло-вода на эмульсионной капле можно считать плоской. Следовательно, чтобы получить оптимальную упаковку молекул ПАВ на межфазной границе, которая контролирует устойчивость эмульсий, молекулы поверхностно-активного вещества должны иметь такую геометрию, чтобы размер полярной группы был приблизительно одинаковым с размером гидрофобного «хвоста». Другими словами, значение КПУ такого ПАВ должно быть близким к единице. Легко увидеть, например рассматривая молекулярные модели, что у линейных этоксилированных спиртов, обычно использующихся в качестве эмульгаторов при получении эмульсий «масло в воде», объем гидрофобного «хвоста» намного меньше объема полярной группы. У соответствующих этоксилированных алкилфенолов объем гидрофобных «хвостов» также меньше, чем объем полярной группы, но это различие не столь большое. Поэтому линейные этоксилированные жирные спирты хуже упаковываются на границах раздела фаз, чем этоксилированные алкилфенолы. Различие в упаковке молекул данных НПАВ на межфазных границах можно объяснить также тем, что движущая сила адсорбции таких этоксилированных спиртов меньше, чем для этоксилированных алкилфенолов.
Этоксилированные спирты, молекулы которых содержат гидрофобные разветвленные фрагменты, характеризуются более сбалансированной геометрией, чем их линейные аналоги. Так называемые «спирты Гербе» — спирты с длинными боковыми цепями у второго атома углерода, являются перспективным сырьем для получения сбалансированных этоксилированных спиртов. Было установлено, что такие НПАВ потенциально могут заменить этоксилированные алкилфенолы в разнообразных практических целях. Спирты с боковыми метальными группами, получаемые в процессе «оксосинтеза», представляют другой тип разветвленных спиртов.
Рис. 10. Структуры нормальных этоксилированных спиртов и этоксилированного нонилфенола
Еще одно различие между этоксилированными нонилфенолами и этоксили-рованными спиртами — это наличие шести р-электронов в гидрофобной части нонилфенолов, что влияет на взаимодействия между ПАВ и ненасыщенными компонентами масла. Известно, что фенолы способны выступать донорами электронов при образовании донорно-акцепторых комплексов, предоставляя р-электроны молекулам-акцепторам электронов. Это взаимодействие может быть достаточно сильным, хотя природа связи до конца не ясна. Разумно предположить, что при взаимодействии этоксилированных алкилфенолов с двойной связью молекул, находящихся в масляной фазе, образуются такие комплексы, чего не может быть в случае этоксилированных спиртов. Образование донор-но-акцепторного комплекса с участием этоксилированного нонилфенола показано на рис. 11.
Электронные эффекты не настолько вездесущи, как эффекты геометрической упаковки. Донорно-акцепторные комплексы могут возникать только в том случае, если масло содержит компоненты, способные выступать как акцепторы электронов. Такими компонентами могут быть олефины и ароматические соединения, особенно содержащие группы, способные оттягивать электроны. Множество пищевых эмульсий, как и многие технические эмульсии, содержат масла с ненасыщенными компонентами. Образование комплексов способствует усилению взаимодействия между эмульгатором и масляной фазой. В свою очередь это позволяет использовать поверхностно-активные вещества с немного более длинными полиоксиэтиленовыми цепями, чем обычно. Более длинные оксиэти-леновые цепи обеспечивают более высокую растворимость поверхностно-активного вещества в воде. Такие ПАВ, не дающие дополнительного вклада в гидрофобные взаимодействия неполярных радикалов с маслом, преимущественно находятся в водной фазе. Использование поверхностно-активных веществ с более длинными оксиэтиленовыми цепями выгодно, поскольку такие цепи обеспечивают сильное стерическое отталкивание между каплями, предотвращая их коалесценцию.
Рис. 11. Электронный донорно-акцепторный комплекс между этоксилированным нонилфенолом и ненасыщенной связью
Правило Банкрофта и динамика адсорбции ПАВ