Реферат: Эпитермальная золотая минерализация лоу сульфидейшн
Au(HS)2 - : 2Au(HS)2- + H2 + 2H+ ~ 2Au + 4H2S (1)
Следовательно, чтобы отложить золото требуется добавить соединения с левой стороны уравнения и удалить соединения справа. Раствор должен стать более восстановительным, более кислым и меньшим H2 S.
Это не согласуется с первичным отложением золота в результате кипения гидротерм, поскольку Н2 плохо растворяется и выделяется при кипении. Кипящие гидротермальные растворы становятся щелочными, а потери H2S, хорошо растворимого газа, незначительны и возможны лишь при продолжительном кипении. Это привело ряд исследователей к полному отказу от процесса существования кипения, которое могло бы рассматриваться в качестве механизма отложения золота, тогда как другие исследователи предположили, что возможное отделение H2Sв результате продолжительного кипения является достаточным, чтобы изменить рН и окислительное состояние. Эта идея позаимствована из химии золота в чистом виде и, поскольку золото составляет значительную часть компонентов, составляющих незначительное меньшинство в образующемся месторождении, поведение главных минералов, которые отлагаются с золотом, также должно быть рассмотрено.
Кремнезём является главным компонентом золото содержащих комплексов. Это определяется раствором, таким, каким является кремневая кислота:
H4SiO4 ~ H+ + HSiOs- (2)
он отлагается согласно реакции:
H4SiO4 ~ SiO2 + 2H2O (3).
Однако кремневая кислота является слабой кислотой и не очень сильно влияет на рН и любая концентрация Н+ сдвигает уравнение (1) вправо, что означает увеличение растворимости кремнезема, а не его отложение, как это наблюдается в натуре. Аморфный кремнезём также имеет сложный механизм отложения, который проявляется в том, что коллоидные частицы должны образоваться из пересыщенных растворов перед их отложением и имеется временной лаг между перенасыщением гидротермальных растворов относительно кремнезёма и образованием их коллоидов, известный как индукционный период. Следовательно, восходящие гидротермы, которые кипят и становятся пересыщенными в отношении кремнезёма, в результате парообразования и остывания не будут сразу отлагать кремнезём. Однако индукционный период будет более кратким при повышении концентрации кремнезёма, а для конкретной концентрации кремнезёма будет значительно короче при более низкой температуре, более высокой минерализации и большим рН, за исключением того, когда он был нейтрализован при очень высоких рН, вызванным увеличенной растворимостью (Klein, 1995). Эти условия совпадают с кипением, первоначально создающим пересыщенный раствор, и в последующем, приводящим к отложению кремнезёма в более холодных верхних частях зоны кипения, а не отложения кремнезема по всей зоне, где присутствуют пересыщенные кремнезёмом гидротермы. Следовательно, текстуры в местах отложения золота свидетельствуют о его образовании из сильно пересыщенных растворов относительно кремнезёма.
Пирит также находится с золотом, в связи с чем, необходимо рассматривать его отложении: Fe2 + + 2H2 S ~ FeS2 + 2 H+ + H2 (4)
Fe2+ является преобладающей формой железа в водном растворе при его низкой минерализации (Heinrich, Seward, 1990). Эта реакция может быть обусловлена кипением, как результат концентрации раствора и уменьшения растворимости пирита с падением температуры. Она будет иметь очень сильное влияние на плохую растворимость золота вследствие потери H2 S и восстановления кислотности раствора. Все эти условия способствуют понижению растворимости золота. Соосаждение пирита и золота согласуется с отложением золота в результате кипения, но механизм дальнейшего снижения рН должен сдерживать отложение золота.
Другой минерал, представленный в рудоносном материале, адуляр будет отлагаться в соответствии с реакцией:
K+ + Al(OH)3 + 3H4 SiO4 ~ KAlSi3 O8 + H+ + 7H2 O (5)
Al(OH)3 - является преобладающим соединением алюминия в около нейтральных рН, слабо минерализованных гидротермах. Эта реакция при содействии Н+ приводит к сдвигу уравнения (1) вправо и будет благоприятно развиваться при перенасыщении кремнезёма, обусловленного кипением, но это не согласуется с наблюденными золото содержащими минеральными комплексами, где адуляр обычно присутствует лишь в виде второстепенной фазы и лишь в редких случаях содержит золото. Однако, вероятно, что большая часть отложений адуляра и уменьшение рН будут происходить, по мере того, как гидротермы поднимутся до глубин ниже отложения золота и более быстро, чем произойдет отложение кремнезёма. Аналогично, отложение кальцита в начале кипения до отложения золота на глубине снижает рН:
Ca2 + + HCO3- ~ CaCO3 +H+ (6).
Следовательно, отложение золота в результате кипения является поэтапным процессом: -первичное кипение на глубине вызывает отложение кальцита,
-непрерывный восходящий поток гидротерм и снижение давления приводит к дальнейшему кипению и отложению адуляра,
-расширение разлома и дальнейшее кипение обусловливает отложение кремнезёма, пирита, второстепенного адуляра и золота.
Это проявляется в ряде следствий:
-Последовательность отложения минералов требует значительного продвижение гидротерм вверх, следовательно, промышленная золотая минерализация этой серии механизмов приурочена к восходящим потокам.
-Поскольку обычно присутствует более чем одна генерация отложений минералов, то разные части последовательности отложения минералов могут быть наложенными разными генерациями.
-Обычно только одна генерация переносит значительные количества золота, что достаточно для промышленного месторождения.
-Следовательно, важно идентифицировать, какие генерации содержат золото. Необходима высокая тщательность исследования, чтобы не перепутать генерации минералов и определить последовательность отложения минералов и, следовательно, глубину вскрытия эрозией рудной минерализации.
После рудные изменения включают замещение таблитчатого кальцита кварцем и отложение кальцита и каолинита поздней стадии. Необходимо, чтобы эти изменения чётко отличались от рудообразующих событий, для того чтобы точно оценить потенциал месторождения.
2.3 Эпитермальные золотые месторождения лоу сульфидейшин в латеральных потоках (растёках)
Характерные черты.
Эти месторождения известны также в качестве кварц-серицитовых. Примером этого типа месторождений является Комсток Лоуд в Неваде (рис.5). Рудоносные гидротермы почти нейтральные, более минерализованы и в среднем более высокотемпературные (200-2600 С), чем в месторождениях восходящих потоков.
Обычно они встречаются в виде жил со штокверкованием на границах их висячих стенок. Они сложены кварцем (с очень редким халцедоном) и сульфидами. Текстуры более простые, чем текстуры, характерные для месторождений, содержащих адуляр, с простыми полосами и с порами в позднюю стадию. Однако обычны жильная брекчия и кокардовые текстуры. Полиметаллические сульфиды обильны и представлены пиритом, галенитом, сфалеритом и халькопиритом. Реже встречается сульфосолевой тетраэдрит.
Рудный минерал представлен золотом и он тесно ассоциирует с полиметаллами, находясь наиболее часто в пирите. Кварц может быть аметистом. Серебряные месторождения могут содержать разные комплексы, включающие: аргентит-акантит, полибазит-пиерсеит, миаргирит, науманнит, проустит-пираргирит, ксантоконит и дискразит. Барит является обычным жильным минералом в серебряных месторождениях и также может встречаться флюорит. Сфалерит, связанный с золотой минерализацией, представлен ячеисто окрашенными бедными железом разностями. Кальцит более поздних стадий, в особенности содержащие марганец, китнахорит и родохрозит может присутствовать и ассоциироваться с золотой минерализацией. Обломки вмещающих пород в жилах и породы, непосредственно окружающие жилу, изменены до филлитов, представленных кварцем, иллитом и пиритом. Эти минеральные комплексы характерны для региональных пропилитов.
Жильная брекчия встречается очень часто, с обычной рудной минерализацией, образованной после брекчиеобразования.