Реферат: Эволюция галактик и звезд

У звёзд более массивных, чем Солнце, давление вырожденныхэлектронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденногонейтронного вещества.

Сверхмассивные звёзды.

Крабовидная туманность, разлетающиеся остатки взрыва сверхновой, произошедшего почти 1000 лет назад

После того, как внешние слои звезды, с массой большей чем пять солнечных, разлетелись образовав красный сверхгигант, ядро вследствие сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются тяжёлые элементы, что временно сдерживает коллапс ядра.

В конечном итоге, по мере образования всё более тяжёлых элементов периодической системы, из кремния синтезируется железо-56. Вплоть до этого момента синтез элементов высвобождал большое количество энергии, однако именно ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер невозможно. Поэтому когда железное ядро звезды достигает определённой величины, то давление в нём уже не в состоянии противостоять колоссальной силе гравитации, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То что происходит в дальнейшем, не до конца ясно. Но что бы это ни было, это в считанные секунды приводит к взрыву сверхновой звезды невероятной силы.

Сопутствующий этому всплеск нейтрино провоцирует ударную волну[источник не указан 596 дней ] . Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала — так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вырываемыми из ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа.

Взрывная волна и струи нейтрино уносят материал прочь от умирающей звезды в межзвёздное пространство. В последующем, перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим мусором, и возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта:

Нейтронные звёзды.

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны упасть на атомное ядро, где они, сливаясь с протонами, образуют нейтроны[источник не указан 322 дня ] . Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы — не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые совершают 600 оборотов в секунду. Когда ось, соединяющая северный и южный магнитный полюса этой быстро вращающейся звезды, указывает на Землю, можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары», и стали первыми открытыми нейтронными звёздами.

Чёрные дыры.

Далеко не все сверхновые становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс звезды продолжится и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше Шварцшильдовского. После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности. Согласно этой теории, материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовая механика, вероятно, делает возможными исключения из этого правила.

Остаётся ряд открытых вопросов. Главный среди них: «А есть ли чёрные дыры вообще?». Ведь чтобы сказать точно, что данный объект — это чёрная дыра, необходимо наблюдать его горизонт событий. Это невозможно сугубо по определению горизонта, но с помощью радиоинтерферометрии со сверхдлинной базой можно определить метрику вблизи объекта, а также зафиксировать быструю, миллисекундную переменность. Эти свойства, наблюдаемые у одного объекта, должны окончательно доказать существование чёрных дыр.

В настоящий момент существуют только косвенные наблюдения. Так, наблюдая светимость ядер активных галактик, можно оценить массу объекта, на который происходит аккреция. Также массу объекта можно оценить по кривой вращения галактики или по частоте обращения близких к объекту звёзд, используя теорему вириала. Для многих галактик масса центра оказывается слишком большой для любого объекта, кроме чёрной дыры. Есть объекты с явной аккрецией вещества на них, но при этом не наблюдается специфического излучения, вызванного ударной волной. Из этого можно сделать вывод, что аккреция не останавливается твёрдой поверхностью звезды, а просто уходит в области очень высокого красного смещения, где согласно с современными представлениями (2009 год) никакой стационарный объект, кроме чёрной дыры, невозможен.

Также открыты вопросы: возможен ли коллапс звезды непосредственно в чёрную дыру, минуя сверхновую? Существуют ли сверхновые, которые впоследствии станут чёрными дырами? Каково точное влияние изначальной массы звезды на формирование объектов в конце её жизненного цикла?

Взгляды различных ученых на процессы рождения и развития галактик.

К проблеме эволюции галактик ученые начали серьезно подходить в середине 40х годов. Эти годы ознаменовались рядом важных открытий в звездной астрономии. Удалось выяснить, что среди звездных скоплений, рассеянных и шаровых, имеются молодые и старые, и даже оценить их возраст.

Поэтому путь к раскрытию хода эволюции галактик, казалась, намечен сам собой. Нужно было произвести своеобразную перепись населения в галактиках разных типов и сравнить результаты. В каких галактиках: эллиптических или спиральных, в каких классах галактик преобладают более молодые или более старые звезды такое исследование дало бы ясное указание на направление эволюции галактик, позволило бы выяснить эволюционный смысл классификации Хаббла.

Но прежде надо было выяснить численное соотношение между разными типами галактик. Непосредственное изучение фотографий полученные на обсерватории Маунт Вилсон, позволило Хабблу получить следующие результаты эллиптические - 23%, спиральные 59%, спиральные с перемычкой 15%, неправильные 3%.

Однако действительное соотношение численности галактик разных типов оказалось иным. В 1948 г. Московский астроном Ю.И.Ефремов обработал данные каталога галактик Шепли и Эймс и пришел к следующим выводам: эллиптические галактики в среднем на 4 звездные величины слабее спиральных по абсолютной величине. Среди них много галактик карликов. Если учесть это обстоятельство и сделать пересчет количества галактик в единице объема, то окажется, что эллиптические галактики примерно в 100 раз больше чем спиральные.

И так, большая часть спиральных галактик оказалась галактики гиганты, большинство эллиптических галактик галактики карлики. Конечно, среди тех и других существовал некий разброс в размещении, имелись и эллиптические галактики гиганты, но в среднем было именно так.

В 1947 году Х.Шепли обратил внимание на то, что количество ярких сверхгигантов постепенно убывает по мере перехода от неправильных галактик к спиральным, а затем к эллиптическим. Спиралях класса Sа, замечает Шепли, встречаются лишь очень мало звезд большой светимости, а в эллиптических галактиках они практически отсутствуют. Получалось, что молодыми являлись именно неправильные галактики и спирали класса Sс сильно разветвленными ветвями, спирали класса Sа и эллиптические галактики находились на более поздней стадии развития. Шепли тогда же высказал мысль, что переход галактик из одного класса в другой должен был занять громадные сроки и совсем не обязательно имел место. Возможно, что галактики образовались все такими какими мы их наблюдаем, а потом лишь медленно эволюционировали в направлении сглаживания и округления их форм.

Х. Шепли обратил внимание еще на одно важное обстоятельство. Уже давно было известно существование двойных галактик это не случайные совпадения положений, не могли они быть и результатом захвата одной галактики другой. И вот не редко в этих парах галактики существовали спиральные с эллиптическими. Но галактические пары, очевидно, вместе и возникли. Можно ли в этом случае допустить, что они прошли существенно разный путь развития.

В 1949 году советский астроном профессор Б. В. Кукаркин опубликовал важную работу Исследование строения и развития звездных систем на основе изучения переменных звезд . В ней были и новые установленные соотношения, и их глубокий теоретический анализ.

В своей работе Кукаркин обращал внимание на давно обнаруженные, но часто забываемые обстоятельства существования не только пары, но и скопления галактик. Между тем возраст скопления галактик, судя по данным небесной механики, не может превышать 1012 лет. (Здесь Кукаркин явно отдавал дань длинной школе развития звездных систем; в действительности этот предел гораздо меньше.

Таким образом, получалось, что практически одновременно образовались галактики разных форм. Значит, переход каждой галактики за время ее существования из одного типа в другой совсем не обязателен.

К концу сороковых и началу пятидесятых годов в космогонии галактик сложилось несколько направлений.

Представители одного из них пытались построить новую гипотезу образования галактик из каких то первичных, до галактических форм материи. Так Вейзеккер разработал теорию возникновения галактик из вращающейся массы, в которой значительную роль играла турбулентность. По его теории эллиптические галактики находились на самой поздней, а неправильные на самой ранней стадии развитии. Но Вейзеккер ввел существенные уточнение: он показал что в случае турбулентного развития газовых масс в галактике шкала времени такого развития пропорциональна размерам галактик. По этому карликовые эллиптические галактики хотя и находятся на более поздней стадии развития, но могут быть моложе по возрасту, чем гигантские спиральные. Это позволяло устранить возрождение, связанное с тем, что в скоплениях встречаются галактики всех типов. Но тогда должна была существовать зависимость между размерами и стадией эволюции галактик в скоплениях, то есть самые маленькие галактики там должны быть непременно эллиптическими, средние спиральными, а большие неправильными. И хотя между эллиптическими и спиральными галактиками такое соотношение размеров выполнялось, неправильные галактики, будучи меньше спиральных, явно не укладывались в схему Вейзеккера.

Наконец, не согласовывался с этой гипотезой тот факт, что в эллиптических галактиках преобладают старые звезды ( в абсолютной шкале времени). Значит, эллиптические галактики должны быть не только относительно, но и абсолютно старше спиральных. А как же быть с галактиками в скоплениях? Предложение, что эллиптические галактики образовывались раньше, а спиральные возникали в том же скоплении потом, слишком искусственно. К тому же данные о парных галактиках этому противоречат.

Выход из положения наметился благодаря работам В. А. Амбарцумяна и его школы, показавшим, что звездообразование в нашей, а значит и в других галактиках, продолжается в наше время. Поэтому спиральные и неправильные галактики могут изобиловать молодыми звездами из населения I типа не потому, что эти галактики сами молоды, а потому, что в них имеются условия для звездообразования, тогда как в эллиптических галактиках они почему-либо отсутствуют.

К-во Просмотров: 304
Бесплатно скачать Реферат: Эволюция галактик и звезд