Реферат: Эволюция иммунной системы

Экспрессия МНС у Xenopusна каждой стадии жизненного цикла различна

Интересная особенность экспрессии МНС в онтогенезе у Xenopusзаключается в том, что до стадии метаморфоза классические молекулы МНС класса I не экспрессируются на поверхности каких-либо клеток. Напротив, молекулы класса II появляются уже на ранней стадии развития головастиков на В-клетках и некоторых эпителиальных клетках, непосредственно контактирующих с внешней средой. Это свидетельствует о том, что экспрессия классических молекул класса I не является необходимой для ранних стадий развития или для функционирования иммунной системы на стадии головастиков. Не исключено, однако, что важную роль в иммунитете головастиков играют неклассические белки класса I. На этой стадии онтогенеза основное значение, возможно, имеет клеточный иммунитет, рестриктирован-ный по молекулам МНС класса II. Более широкое представительство молекул МНС класса II у головастиков по сравнению со зрелыми лягушками указывает на то, что на низших ступенях эволюции, в более примитивной иммунной системе, именно эти молекулы, возможно, несли функцию презентации антигенов.

МНС у других позвоночных

Белки МНС классов I и II и полиморфные гены класса II недавно обнаружены у хрящевых рыб. Среди костистых рыб генами МНС класса I и Р2 -микроглобулина обладает, как установлено, радужная форель и генами МНС класса II — карп.

Аксолотли, для которых характерны относительно слабые Т-клеточные реакции на аллоан-тигены. обладают а- и в-цепями молекул МНС класса II с ограниченным полиморфизмом. Эти земноводные экспрессируют также кодируемые МНС эритроцитарные антигены, сходные с б-ue-пями класса I и с полиморфными молекулами класса IV. присутствующими на ядерных эритроцитах курицы. Они могут присутствовать также у Xenopus.б-Цепи класса I и гетероди мерные молекулы класса II найдены и у различных пресмыкающихся.

У различных позвоночных фенотипически и функционально идентифицированы Т-клетки

У птиц найдены бв- и гд-ФкС в комплексе с коре-цепторными молекулами CD3, CD4 и CD8. В настоящее время появляются данные о наличии некоторых из этих рецепторов или составляющих их цепей у рыб и амфибий. Например, гены из тимоцитов и спленоцитов мексиканского аксолотля обнаруживают значительную гомологию с генами в-цепей ТкР пгиц и млекопитающих. На поверхности тимоцитов и лимфоидных клеток опухоли тимуса у Xenopusприсутствует белок 55 кДа, сходный по аминокислотной последовательности с д-цепью ТкР. С помощью полученных в настоящее время моноклональных антител анти-Xenopusобнаруживаются маркеры, возможно соответствующие CD5 и CD8. У радужной форели недавно выявлены генные сегменты, кодирующие в-цепи ТкР, однако получить монокло-нальные антитела, специфичные по отношению к Т-клеткам рыб, пока не удалось. У хрящевых рыб найдены четыре различных типа генов Т-клеточных рецепторов. Клеточная и молекулярная основа реакции СКЛ, наблюдающейся у ми-ксин, пока не расшифрована.

Важнейшее значение для иммунных реакций у пойкилотермных животных имеет температура. У сома низкая температура тормозит пролиферацию Т- клеток. Эти эффекты обусловлены низким содержанием некоторых ненасыщенных жирных кислот в Т-клетках рыб и связанной с этим текучестью мембран. Поэтому корм с высоким содержанием соответствующих жирных кислот может способствовать лучшей адаптации рыб к низкой температуре. Олеиновая кислота снимает также наблюдаемую при низких температурах супрессию реакций Т-клеток млекопитающих invitro.

Эволюция В-клеток и иммуноглобулинов

Тяжелые и легкие цепи иммуноглобулинов имеются у различных позвоночных

Обнаруженные у миксин белки, ранее считавшиеся антителами, в настоящее время идентифицированы как белки комплемента СЗ—С5. Пока у круглоротых не удалось выявить молекул, принадлежащих к суперсемейству иммуноглобулинов.

Все челюстноротые позвоночные вырабатывают антитела к широкому кругу антигенов. Однако антитела, вырабатываемые пойкилотермными позвоночными, характеризуются низкой аффинностью и слабой иммунологической памятью по сравнению с антителами у гомойотермных позвоночных. Структура антител эволюционно консервативна; у всех животных эти белки состоят из мультидоменных тяжелых и легких полипептидных иммуноглобулиновых цепей, которые могут экспрессироваться на поверхности

В-клеток, играя роль рецепторов, или секретиро-ваться активированными В-клетками в кровь.

У всех челюстноротых позвоночных присутст^ вует полимерный IgM, а у рыб антитела принадлежат в основном к этому классу. Каждая тяжелая м-цепь состоит из четырех констант-* ных и одного вариабельного доменов; тяжелые и легкие цепи связаны дисульфидными мостиками. Семейство м-цепей обнаруживает в филоге-, незе значительное разнообразие; например, между м-цепями сома и мыши имеется лишь 24% гомология по аминокислотной последовательности.

У некоторых хрящевых рыб, таких как скаты и' акулы, обнаружены низкомолекулярные антитела без м-цепей, но эволюционная связь IgR с другими изотипами З-цепей остается неясной. У амфибий, рептилий и птиц имеется состоящий из четырех константных доменов изо-тип тяжелых цепей, получивший обозначение [gY. Предположительно он является предшественником IgG и IgE млекопитающих, с которыми имеет структурное и функциональное сходство. У аксолотля IgY может быть и секреторным иммуноглобулином, так как в кишечнике он связан с молекулами, сходными с секреторными. Интересно, что несмотря на отсутствие у рыб IgE, костистые рыбы демонстрируют реакции гиперчувствительности I типа; возможно, у них имеются связанные с тканями гомоцитотропные антитела. У Xenopusизотип IgX, продукция которого в отличие от IgY является тимус-независимой, может быть эквивалентом секреторного IgA млекопитающих, поскольку этот изотип присутствует в основном в кишечнике. Изотип IgA, возможно, впервые появляется у птиц.

Для многих пойкилотермных характерно и разнообразие легких цепей. Два антигенно различных типа легких цепей, один из которых сходен с к-цепью, обнаружены у Xenopusи два — у сома, черепахи и аллигатора. У акул имеются как к-, так и л-цепи; это свидетельствует, что дивергенция предковых легких цепей произошла до этапа хрящевых рыб.

Усатая акула-нянька, как недавно установлено, обладает ранее неизвестной молекулой им-муноглобулинового суперсемейства, которая, возможно, эволюционно предшествовала появлению иммуноглобулинов и ТкР. Эта молекула состоит из одного вариабельного и пяти константных доменов и присутствует в сыворотке в виде димера. Кодирует НАР генный локус, который подвергается перестройке и соматическому мутированию. В настоящее время у хрящевых рыб выявлен новый класс химерных антител; это позволяет усомниться в том, что первичным изотипом lg является IgM.

У низших позвоночных обнаружены четыре типа организации генов иммуноглобулинов

Активные исследования локуса иммуноглобули-новых генов у пойкилотермных позвоночных с помощью технологии рекомбинантной ДНК позволили в последние годы обнаружить четыре типа его организации.

Амфибии и костистые рыбы У этих животных ло-кус IgH организован по тому же типу, что и у млекопитающих. У Xenopus, например, имеется 80—100 сегментов Vh, 15 — Dhи 9 — Jh. Обнаружены как структурные области, так и области, определяющие комплемен-тарность. Константные области каждой цепи у Xenopusкодируются четырьмя экзонами Сн. Легкие цепи кодируются двумя разными хромосомами, каждая с сегментами Vl, Jl и Cl. У костистых рыб гены легких цепей иммуноглобулинов обнаруживают «мультикластерную» организацию, типичным примером которой служит их организация у акул.

В процессе созревания В-клеток у Xenopus, как и у млекопитающих, происходят множественные перестройки иммуноглобулиновых генов: существует и аллельное исключение, приводящее к появлению моноспецифичных В-лим-фоцитов. У Xenopusнайдены активированные ре-комбиназой гены, но разнообразие антител при этом весьма незначительно; у взрослых особей имеется всего примерно 5-105 различных молекул антител. Ограниченное созревание аффинности после активации В-клеток у Xenopus, по-видимому, не связано с отсутствием соматического мутирования иммуноглобулиновых генов. Скорее это можно связать с неэффективной селекцией мутантов из-за отсутствия в лимфоид-ных органах холоднокровных соответствующих центров размножения. Лимфоузлы с центрами размножения найдены лишь у птиц и млекопитающих. Хотя у головастиков Xenopusимеются те же три изотипа lg, какие присутствуют у зрелых особей, репертуар антител у тех и других различен. На репертуар lg у зрелых особей влияют генные перестройки, происходящие при новой волне созревания В-клеток после метаморфоза. Третья гипервариабельная область у зрелых особей приобретает дополнительное разнообразие вследствие случайного добавления Н-концевых остатков, тогда как у головастиков этого не происходит.

Возникновение разнообразия антител у птиц В данном случае оно связано с иным типом организации иммуноглобулиновых генов и происходит в характерном только для птиц месте — в расположенной у клоаки фабрициевой сумке. В локусе легких цепей у курицы имеется один V-ген, который вначале перестраивается и соединяется с одним комплексом J—С. Ло-кус IgH содержит также область множественных

D-генов. Перестройка происходит в течение лишь ограниченного периода раннего развития, когда стволовые клетки колонизируют фабрици-еву сумку; в отличие от этого у мыши и человека перестройка иммуноглобулиновых генов в пре-„ В-клетках происходит в течение всей жизни организма. Затем сегменты перестроенных иммуноглобулиновых генов заме-») щаются у курицы нуклеотидными последовательностями из псевдогенов, примыкающих к един-iственному V-гену. Генные конверсии происходят с высокой частотой в течение всего срока пролиферации В-клеток в сумке.

Третий тип организации генных покусов 1д обнаружен у хрящевых рыб В этом случае тяжелаяи легкиецепи иммуноглобулинов! кодируются многочисленными мелкими отдельными кластерами, включающими все V-, J- и С-гены. Каждый кластер иммуноглобулиновых генов по последовательности ДНК отличается от других. Эти последовательности имеют гаметную конфигурацию. Антитела акул обладают, по-видимому, чрезвычайно разнообразным репертуаром связывающих специфичностей, но, поскольку разнообразие закодировано в гаметной ДНК, а не обусловлено соматическими механизмами, между особями различия в иммуноглобулинах отсутствуют. Таким образом, ф?

К-во Просмотров: 440
Бесплатно скачать Реферат: Эволюция иммунной системы