Реферат: Эволюция системы кровообращения
У большинства амфибий хорошо развиты симпатический и парасимпатический отделы нервной системы, которые участвуют в иннервации хромо-финной ткани и сердечно-сосудистой системы. Сердца позвоночных, начиная с амфибий, имеют прямую симпатическую иннервацию, т.е. адренергический аппарат представлен трехмерной сетью волокон, где и происходит выделение медиаторов (Говырин, 1981). Сигнализация о наполнении желудочков у амфибий обеспечивается за счет механорецепторов сердца. У млекопитающих механорецепторы расположены в основном на входе (устья полых вен) и на выходе из сердца (легочная артерия, дуга аорты, каротидные синусы).
2.5. Эволюция вазомоторных механизмов
На примере высших и низших позвоночных прослеживается возрастание в ходе эволюции роли нейрогенных и гуморальных механизмов регуляции тонуса сосудов, которые существенным образом дополняют собственную активность гладких сосудистых мышц. В результате этого сформировалась иерархическая система вазомоторного контроля, которая обеспечивает у высших позвоночных неодинаковые реакции сосудов различных регионов на один и тот же стимул. Физиологический смысл таких изменений состоит в том, что возможности изменений точно ограничены, в связи с чем перераспределение токов крови между регионами в зависимости от потребности их в крови может быть реализовано лишь путем разнонаправленных изменений тонуса различных областей.
Зачатки сосудистой системы обнаруживаются у свободноживущих плоских червей. Стенка сосудов у этих червей образованна клетками паренхимы. У сосальщиков стенки сосудов лишены мышечных волокон, и циркуляция жидкости в системе происходит при движении животного, вследствие сокращения соматической мускулатуры. Однако уже у немертин сосуды способны к сокращениям. Стенка их состоит из трех слоев - внутреннего эндотелиального, среднего мышечного и наружного мезенхимального.
У животных с открытыми системами циркуляции механизмы регуляции просветов сосудов развиты слабо, а у мелких форм членистоногих отсутствуют вообще (Хлопин, 1984).
Типичное для высших позвоночных неодинаковое распределение кровотока, обусловленное меняющимися запросами разных тканей в кислороде, у беспозвоночных отсутствует.
Гладкая (мезенхимальная) мускулатура сосудов эволюционно моложе сердечной и поперечно-полосатой. Она не обнаружена у беспозвоночных. Полагают, что гладкая мускулатура позвоночных не гомологична эпителиальным или из других тканевых элементов и гладким мышцам беспозвоночных, сходство между ними является инвергентным.
На примере строения плечевых сосудов показано, что стенки артерий и вен птиц более толстые, нежели сосудов млекопитающих. Основная масса сосудистой стенки у птиц представлена средней мышечной оболочкой, в то время как внутренняя и внешняя мембраны развиты слабо.
Сосуды рыб обладают высокой чувствительностью к катехоламинам. Адреналин вызывает у рыб прессорную реакцию за счет спазма висцеральных артерий (жаберные сосуды при этом расширяются).
У амфибий сформирован вазомоторный центр в продолговатом и спинном мозге, при этом сигнальные аппараты, в отличие от высших позвоноч- ных, относительно независимы от бульбарных активирующих систем (Хаю-тин, 1982). У лягушек отсутствуют альфа-адренорецепторы, формирующиеся на более поздних этапах эволюции, отсутствуют синокаротидные механоре-цепторные зоны. У рептилий, птиц и млекопитающих адренергическая иннервация сосудов становится закономерной. Адренергическая иннервация у птиц и амфибий, в отличие от млекопитающих, плотнее, чем артерий (Леонтьева, 1978).
Реакции перераспределения кровотока обнаружены у рептилий. Показано, что согревание (охлаждение) гипоталамуса черепах приводит к увеличению (уменьшению) артериального давления на 10-20% за счет изменения тонуса сосудов. Аналогичные реакции описаны и у других рептилий (Дольник, 1981).
Таким образом, в ходе эволюции возрастает как значение сосудистого компонента гемодинамических реакций, так и роли нейрогенных механизмов регуляции.
2.6. Эволюция рефлекторной регуляции сердечной деятельности
Эволюция сердечной деятельности со стороны высших отделов центральной нервной системы проходила несколько стадий:
· начальная - характеризуется невозможностью выработать сер-
дечные рефлексы (опыты на лягушках, змеевидных ящерицах);
· промежуточная - та, на которой условные сердечные рефлексы вырабатываются медленно, не упрочняются и малы по величине. Это наблюдается у черепах;
· высшая стадия - характеризуется выраженной условнорефлек- торной регуляцией сердечной деятельности. Наблюдаются
сравнительно постоянные сердечные условные рефлексы боль-
шой величины. Появляется возможность тормозить сердечные
условные рефлексы и произвести переделку. Эти отношения характерны для голубей, кроликов, собак, обезьян (Баллонов, 1959).
Изучение особенностей регуляции сердечной деятельности у людей свидетельствует о большом сходстве характера условно-рефлекторных влияний на функцию сердечно-сосудистой системы у человека и высших животных (Корнева, 1965).
3. Некоторые общие закономерности эволюции системы крови
Видоизменение состава и количества крови в процессе развития животного мира дает богатый материал для анализа закономерностей эволюции системы крови, где ведущую роль играет процесс формирования внутренней среды, а защитные и транспортные функции зависят от того, в каком микроокружении находятся клетки крови, насколько изменчив состав окружающей их среды. Благодаря поддержанию определенной концентрации электролитов, водородных ионов, макроэргов и других веществ, за счет использования буферных систем кровь приобретает известную независимость от влияний на ее состав продуктов метаболической активности тканей и органов, пищеварительной, дыхательной, выделительной систем, с которыми кровь обменивается разнообразными соединениями.
Вместе с тем, эволюция системы крови тесно связана с эволюцией других тканей и органов. Действительно, синтез альбумина и других белков плазмы зависит от печени; клетки крови формируются в органах кроветворения и, в частности, в ретикулярной ткани костей скелета, который в свою очередь проходит сложный путь исторического развития. Приобретение го-мойотермности в сочетании с развитием буферных систем сыграло большую роль в эволюции основных функций системы крови, потому что обусловило создание оптимального режима работы ферментов крови и других белков, а также более благоприятные возможности для жизнедеятельности клеток крови.
Появление новых признаков. Новые признаки в системе крови чаще всего представляют собою видоизменение тех, которые существовали ранее, у более древних видов животных. По мере того как появляются новые типы молекул и клеток, эволюционно более старые структуры принимают на себя иные роли. Так, дыхательные пигменты, растворенные в гемолимфе, создают буферную емкость и онкотическое давление жидкости, а в тех случаях, когда дыхательные пигменты заключены в эритроцитах, онкотическое давление обуславливают белки, остающиеся в растворе, например, альбумины. У насекомых, не имеющих дыхательных пигментов, роль буферов играют аминокислоты, они же участвуют в создании онкотического давления.
Один из способов изменения и создания новых функций состоит в том, что ряд свойств, характерных ранее для одного вида клеток, распределяется между несколькими видами. Например, инфузории способны к фагоцитозу и синтезу гемоглобина, а в крови высших животных эти функции разделены между эритроцитами и лейкоцитами.
Новый признак становится устойчивым благодаря развитию внутрисистемных координации и за счет возрастающей автономности частей, при которой роль внешних влияний становится не пусковой, а корректирующей. Большая зависимость признаков от условий среды у низших животных является одним из факторов, обуславливающих значительную вариабельность показателей у особей одного вида. Причина развития устойчивых признаков заключается еще и в том, что эволюция частей крови протекает взаимосвязанно. Так, карбоангидраза содержится в различных участках тела беспозвоночных (в зависимости от вида), значение фермента для системы крови невелико. У позвоночных, начиная с рыб, эволюция карбоангидразы крови и эволюция эритроцитов связанны и признак становится устойчивым признаком вида.
Наличие или отсутствие в системе крови определенных групп животных того или иного показателя свидетельствует о том, что адаптивное значение одного и того же признака неодинаково для разных видов. Создавая адаптивные преимущества некоторым видам, некоторые признаки оказываются неоптимальными для других видов, отчего их развитие прерывается в процессе эволюции системы крови.
Филогенез и онтогенез. Эволюция системы крови опирается на ряд событий, которые прослеживаются и в онтогенезе, затрагивая целый комп-
лекс систем. Каждый организм высших позвоночных в своем индивидуальном развитии проходит такие стадии, как разделение лимфатической и кровеносной систем, стабилизация внутренней среды, развитие терморегуляции и костномозгового кроветворения.
Результатом такого сходства между основными перестройками на уровне целого организма является то, что многие показатели, характеризующие картину крови, тоже изменяются сходным образом в онто- и филогенезе: появляются дыхательные пигменты, среди циркулирующих эритроцитов сокращается число ядерных форм, уменьшается аницитоз, стабилизируются показатели крови, ее белковый спектр, развивается способность к выполнению защитных функций и транспорту веществ. Некоторые законы развития клеток настолько обязательны, что повторяются как у примитивных, так и высокоорганизованных существ. У немертин образование эритроцитов начинается с того, что в исходных гемамебоцитах утрачивается амебоидное движение и начинает накапливаться гемоглобин. Клетка проходит полихрома-тофильную и ортохроматофильную стадии развития, пикнотизацию ядра, а в старых клетках - его распад. В эмбриогенезе млекопитающих, когда локализация кроветворения меняется от желточного до костно-мозгового, на каждой стадии используется в принципе одинаковый способ диффиренцировки эритроидных клеток.
Сходство развития важнейших структур системы крови определяется в ряде случаев общими закономерностями физико-химического порядка. В фило- и онтогенезе увеличиваются размеры тела и, следовательно, длина пути, которую вынуждены проходить молекулы газов посредством диффузии. Дыхание тканей на основе прямого газообмена со средой становится недостаточным, появляется необходимость развития сосудистой сети. Возникновение дыхательных пигментов определенной химической структуры в фило- и онтогенезе обеспечивает не только облегчение процесса транспорта газов по сосудистой сети, но, используя электронные факторы в межмолекулярных и внутримолекулярных взаимодействиях, оптимизирует его, повышает экономичность и эффективность.
Скорость эволюции. У древних видов, в глубине ранней истории развитие функций крови, выявляются зеленые, красные, фиолетовые и синие дыхательные пигменты, причем в растворенном состоянии в гемолимфе содержатся молекулы пигментов с молекулярной массой, измеряемой миллионами дальтон, а в клетках гемолимфы и крови содержатся только пигменты с молекулярной массой порядка 100.000 дальтон. Наиболее примитивные существа, способные синтезировать дыхательные пигменты, - это простейшие. Представители исторически наиболее поздней группы кишечнополостные - лишены дыхательных пигментов. От них берут начало две ветви развития животного мира - первично- и вторичноротые, и к каждой из этих ветвей относится множество видов, синтезирующих дыхательные пигменты. В ходе эволюционного развития вторичноротых появляется то же самое, а именно, у иглокожих есть эритроциты с гемоглобином, а у более поздних форм - оболочниковых - их нет. От организмов типа личинок оболочниковых берет начало ланцетник, тоже не имеющий эритроцитов и дыхательных пигментов. Однако далекие потомки ланцетника - позвоночные — становятся постоянными обладателями этого признака, т.е. эритроцитами с содержащимся в них гемоглобином. Причиной того, что в процессе макроэволюции признак утрачивается, а затем появляется вновь, вероятно, подобны тем причинам, которые обуславливают исчезновение и возникновение признаков в ходе микроэволюции, т.е. это либо результат передачи генов в рецессивной форме через серию поколений, либо это сходные мутации на основе сходных геномов. Основные компоненты системы крови образовались в разные периоды эволюции. Концентрация эритроцитов и гемоглобина изменялась как в эволюционно старых, так и молодых филетических линиях, что, по-видимому, было обусловлено давлением экологических факторов. Такой морфофизиологический показатель, как отсутствие ядра в эритроцитах млекопитающих характерен для более древних филетических линий. Предки современных птиц и млекопитающих выделились из группы древних рептилий в триасе 150-180 миллионов лет назад. Эволюция птиц шла с сохранением энергично дышащих ядерных эритроцитов, а развитие млекопитающих быстро привело к снижению относительного числа ядерных форм эритроцитов в периферической крови. Мутация произошла, очевидно, в начале филогенеза собственно млекопитающих, что следует из сравнения картины крови сумчатых и плацентарных. У сумчатых сохраняется небольшое количество ядерных эритроцитов, но их кровь уже существенно отличается от крови рептилий и птиц. Американский опоссум появился в меловом периоде, который начался около 130 миллионов лет назад. Считают, что консервативные признаки этого вида сохраняются уже около 100 миллионов лет. Можно полагать, что таков же возраст безъядерных эритроцитов крови опоссума. Значит, время между появлением ветви млекопитающих и становлением сумчатых примерно 50 миллионов лет, это срок, который понадобился для перехода ядерной крови в практически безъядерную. На фоне этих важных событий параллельно у птиц и млекопитающих шло уменьшение размеров эритроцита.
Таким же древним признаком является тип гемоглобина. В обоих филогенетических ветвях животного мира - у первично- и вторичноротых - в течение длительного периода единственным вариантом гемоглобина являются мономеры. Начиная с рыб, устойчиво используются более сложные молекулярные структуры этого белка - димеры и тетраметры. Тетрамерные варианты гемоглобина возникли около 300 миллионов лет назад, начиная с девона, а затем начали формироваться различные аминокислотные последовательности, характерные типы гемоглобина всех видов позвоночных. Дивергенция гемоглобина утконоса, одного из древнейших млекопитающих, происходило как показывают расчеты 180±37 миллионов лет. Ингрэм предложилсхему эволюции типов полипептидных цепей гемоглобина человека, согласно которых от предкового гемоглобина последовательно ответвились сначала миоглобин, а затем различные виды цепей. Предполагается, что в основе эволюции цепей лежит дупликации генов, хотя, по-видимому, возможны и другие причины.