Реферат: Эволюция звезд 5
Белые карлики – это звезды белого цвета, весьма малых размеров. Они обладают крайне низкой светимостью и чрезвычайно высокой плотностью. К числу белых карликов относится спутник Сириуса, плотность которого близка к 40 000 г\см3 ; масса его составляет 0,97 массы Солнца, тогда как диаметр равен всего лишь 0,03 диаметра Солнца. Чрезвычайно высокая плотность белого карлика обусловлена тем, что подавляющее большинство их атомов полностью ионизовано. Эти атомы состоят из атомных ядер с немногочисленными ближайшими к ним электронами и поэтому занимают гораздо меньший объем (Рис. 2).
2.1.2. КРАСНЫЕ КАРЛИКИ
Красные карлики – это наиболее распространенный тип звезд. Будучи меньше по размеру, чем Солнце, они экономно расходуют свои запасы топлива, чтобы продлить время своего существования на десятки миллионов лет. Если можно было бы увидеть все красные карлики, небо оказалось бы буквально усеяно ими. Однако красные карлики настолько тусклы, что мы в состоянии наблюдать лишь наименее удаленные от нас (Рис. 2).
2.2. ЗВЕЗДЫ – ГИГАНТЫ
Наиболее распространенными являются красные гиганты. У них такая же температура поверхности, как у красных карликов, но они намного больше и ярче. Масса этих монстров обычно примерно равна солнечной, однако, если бы одно из них заняло место нашего светила, его оболочка захватила бы внутренние планеты Солнечной системы.
В действительности большинство из них имеет оранжевый цвет, но звезда R Зайца настолько красна, что некоторые сравнивают ее с каплей крови.
2.3. ЗВЕЗДЫ – СВЕРХГИГАНТЫ
Сверхгиганты – наибольшие по размерам звезды, радиус которых в 30 – 2500 раз превышает радиус Солнца.
Сверхгиганты располагаются вдоль вершины диаграммы Герцшпрунга – Рассела. Бетельгейзе в плече Ориона имеет в поперечнике почти 1 000 млн. км. Другой наиболее яркий светоч Ориона – Ригель, голубой сверхгигант, одна из самых ярких звезд, видимых невооруженным глазом. Будучи чуть ли не в десять раз меньше Бетельгейза, Ригель все же почти в сто раз превосходит Солнце своим размером (Рис. 3).
2.4. СВЕРХНОВЫЕ ЗВЕЗДЫ
Сверхновые звезды – это переменные звезды, светимость которых внезапно увеличивается в сотни миллионов раз, а затем медленно спадает.
Вспышка сверхновой звезды наблюдается весьма редко в среднем не чаще чем один раз в 200-300 лет. Установлено, что ряд вспышек, отмеченных в древних летописях, преимущественно китайских, принадлежит сверхновым звездам. В ряде мест небесной сферы, где, согласно летописям, наблюдались вспышки в настоящее время видны своеобразные светящиеся туманности, представляющие собой несомненно продукт вспышек сверхновых звезд. Из таких объектов лучше всего изучена Крабовидная туманность в созвездии Тельца (Рис. 4).
Крабовидная туманность представляет собой один из наиболее мощных источников радиоизлучения. В процессе вспышки внутреннее строение звезды претерпевает существенные изменения, при этом звезда теряет огромную энергию.
Чтобы звезда могла взорваться в качестве сверхновой, ее масса должна в десять раз превышать массу солнца. Она превращается в красного сверхгиганта, образуя тяжелые элементы типа железа внутри своего ядерного реактора. С потерей значительной части массы звезда постепенно утрачивает способность сопротивляться силе гравитации. Буквально за долю секунды ядро взрывается, разрывая звезду на куски. Расширяющееся облако материи, которое образует тело звезды, соединяется с соседним межзвездным веществом, образуя остатки сверхновой.
2.5. НЕЙТРОННЫЕ ЗВЕЗДЫ И ПУЛЬСАРЫ
Остатки взорвавшегося ядра известны под названием нейтронной звезды. Нейтронные звезды вращаются очень быстро, испуская световые и радиоволны, которые, проходя мимо Земли, кажутся светом космического маяка.
Колебания яркости этих волн навело астрономов на мысль назвать такие звезды пульсарами. Самые быстрые пульсары вращаются со скоростью, почти равной 1000 оборотов в секунду (Рис. 5).
К настоящему времени их открыто уже более двухсот. Регистрируя излучение пульсаров на различных, но близких частотах, удалось по запаздыванию сигнала на большей длине волны (при предположении о некоторой плотности плазмы в межзвездной среде) определить расстояние до них. Оказалось, что все пульсары находятся на расстояниях от 100 до 25 000 световых лет, т. е. принадлежат нашей Галактике, группируясь вблизи плоскости Млечного Пути.
2.6. ДВОЙНЫЕ ЗВЕЗДЫ
Одинокие звезды типа нашего Солнца составляют меньшинство: более половины звезд имеют одного соседа в космосе и носят название двойных.
Двойные звезды – это звезды, близкие одна к другой. Компоненты двойных звезд связаны силами взаимного тяготения, обращаются по эллиптическим орбитам вокруг общего центра масс и совместно движутся в просторах Галактики. Многие звезды видны невооруженным глазом, при наблюдении с более мощным инструментом раздваиваются, а в некоторых случаях оказываются состоящими из трех или даже большего числа составляющих. Такие звезды называются визуально-двойными или кратными звездами. Более яркая составляющая двойных звезд обычно называется главной звездой, а более слабая – спутником.
Помимо визуальных двойных звезд, существуют спектрально-двойные звезды, обнаруживаемые только по периодическим смещениям или раздвоениям спектральных линий; их не удается разделить на отдельные компоненты даже в самые большие телескопы. Существует многочисленный класс двойных звезд, обнаруживаемых только по периодическим изменениям блеска – фотометрические или затменно-двойные.
В 1889 г. была открыта первая спектрально-двойная звезда Мицар (Рис. 6).
По своим физическим характеристикам и особенностям движения в пространстве двойные звезды не отличаются от одиночных звезд. Из этого следует, что двойные звезды не являются каким-то особым классом звезд, что они имеют общее с одинарными звездами происхождение.
3. ЗВЕЗДНЫЕ СКОПЛЕНИЯ
Звездные скопления – это тесные группы звезд, видимые на небольшом участке неба с помощью телескопа или на фотографиях звездного неба. Звездные скопления – физически связанные группы звезд, находящихся в пространстве одна вблизи другой. Плотность распределения звезд в пространстве возрастает к центру звездного скопления. Все звезды, принадлежащие к звездным скоплениям, имеют общее происхождение.
Звездные скопления подразделяются на 2 группы, резко отличающиеся не только по внешнему виду, но и по их распределению в галактической системе, по составу и по происхождению.
¡ Шаровые звездные скопления содержат много тысяч звезд и характеризуются шаровой формой. По небу разбросано более 100 шаровых скоплений. Этим гигантским сборищам звезд около 15 миллионов лет.
Омега Центавра – большое овальное скопление сотен тысяч звезд – видимо невооруженным глазом. Им можно любоваться весенним вечером из южных областей США 47 Тукана (Рис. 7).
¡ Рассеянные звездные скопления состоят из нескольких десятков или сотен звезд и не всегда характеризуются строго шаровой формой. К рассеянным звездным системам по существу относятся и движущиеся звездные скопления. Звезды, принадлежащие к рассеянным звездным скоплениям, постепенно покидают их. Невооруженным взглядом видны только несколько звездных скоплений этой группы: Плеяда (в созвездии Тельца), Гиады (Рис. 7).
¡ Движущиеся звездные скопления представляют собой наиболее близкие к нам звездные скопления, которые обнаруживаются по движениям звезд. Направление собственных движений звезд скопления кажутся исходящими из одной точки, что является следствием перспективы. В действительности же все звезды скопления движутся в пространстве по параллельным путям одинаковыми скоростями, то есть все звездное скопление движется поступательно. Примерами движущихся звездных скоплений являются Гиады - этому скоплению принадлежит около 140 звезд (Рис. 7).
ЗАКЛЮЧЕНИЕ
Одни звезды кажутся нам более яркими, другие более слабыми. Однако это еще не говорит об истинной мощности излучения звезд, поскольку все они находятся на разных расстояниях.
Звезды эволюционируют, и их эволюция необратима, так как все в природе находится в состоянии беспрерывного изменения. Внешние характеристики звезды меняются в течение всей ее жизни.
В недрах звезд происходят мощные термоядерные процессы, обеспечивающие выделение огромного количества энергии. В конечные этапы жизни звезд в них возникают некие упорядоченные состояния, которые не могут быть описаны классической физикой. В нейтронных звездах и белых карликах вещество переходит в новые квантовые состояния, которые ограничивают энергетические потери. Обнаружить эти изменения – вот основная задача теории звездной эволюции.
ПРИЛОЖЕНИЕ
Рис. 1
Диаграмма Герцшпрунга – Рассела
Рис. 2
ЗВЕЗДЫ-КАРЛИКИ
Белый карлик
Рентгеновский снимок системы звезд Сириус, сделанный из космической обсерватории Чандра. Более яркий источник на фото – звезда Сириус В, представляющая собой белый карлик.
Красный карлик