Реферат: Факторы, определяющие построение электронных средств
Таблица 2
H, км | 1 | 2 | 3 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 26 | 31 |
р, мм рт. ст. | 674 | 596 | 526 | 462 | 354 | 267 | 199 | 145 | 106 | 78 | 57 | 41 | 16 | 7,7 |
Влияние пониженного давления на работоспособность РЭА проявляется через следующие явления:
1. Уменьшается электрическая прочность воздушных промежутков,
2. Ухудшаются условия теплообмена конвекцией, что вызывает дополнительные перегревы изделий,
3. В герметичных блоках возникают дополнительные механические напряжения в стенках, крышках и деталях крепления за счет перепада давлений.
Зависимость коэффициента относительной электрической прочности воздушных промежутков от высоты над уровнем моря представлены в табл. 3.
Таблица 3.
H,км | 1 | 2 | 3 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 26 | 31 |
КЕ | 1 | 0,9 | 0,8 | 0,72 | 0,56 | 0,45 | 0,35 | 0,3 | 0,25 | 0,19 | 0,14 | 0,1 | 0,05 | 0,03 |
Рис. 3
Рис. 4
Рис. 5
Рис. 6
Заметив что с дальнейшим уменьшением давления (ниже 6-7 мм рт. ст.), т.е. с повышением высоты более, чем 30-40 км, электрическая прочность возрастает и подчиняется закону Пашена (рис. 4).
Уменьшение конвективной теплопередачи определяется из графика (рис. 5), где величина коэффициента k представляет собой отношение коэффициентов теплоотдачи при заданном и нормальном давлениях:
, (5)
Это уменьшение теплоотдачи, в свою очередь, приводит к уменьшению электрической прочности из-за повышения температуры узлов и температуры окружающего их объема (среды). Коэффициент снижения напряжения поверхностного перекрытия в интервале температур +20¸+150°С при всех значениях атмосферного давления от 760 мм рт.ст. до 3мм рт.ст. близок к температурному коэффициенту изменения плотности воздуха и может быть оценен следующей формулой:
(6)
где Т – температура платы, поверхности узла и т.п.,
tn , tном – температура окружающего воздуха в нормальных и номинальных заданных условиях.
Значение коэффициента Kt от температуры окружающей среды представлены в таблице 4
Таблица 4
t,°C | 50 | 70 | 100 | 120 | 150 | 175 | 200 |
Kt | 0,9 | 0,85 | 0,78 | 0,75 | 0,7 | 0,65 | 0,6 |
Таким образом, оба указанных фактора при пониженном атмосферном давлении могут значительно уменьшить диапазон рабочих напряжений в радиоэлектронных устройствах.
Пример: требуется определить рабочее напряжение питания радиоэлектронного блока на печатной плате, работающего при Р=7,7 мм рт.ст. (31км высоты) и температуре окружающего воздуха tном =+70°C. При этом известно что рабочая частота блока равна 5МГц, а зазоры между печатными проводниками составляют порядка 1мм. Из справочных данных определяем электрическую прочность воздуха при промежутке 1мм для нормальных условий Е0 =4кВ/мм. Согласно данным таблицы 3 определяем электрическую прочность при пониженном давлении Е=4*0,03=120В/мм. Пробивное напряжение при этом в зазоре в 1мм равно 120 вольт. Как следу из графика рис.6 величина этого напряжения при частоте 5МГц должна быть уменьшена на 25%, т.е. uf =0.75*u0 =0.75*120=90 вольт. Далее учтем снижение напряжения поверхностного пробоя от окружающей температуры согласно данным табл.4, т.е. uпр =uf *Kt =90*0.85=76 вольт. Поскольку величина рабочего напряжения обычно выбирается в 1,5-2 раза меньше, то в нашем случае в итоге получаем
.
Откуда видно, что применение ламп, даже сверхминиатюрных, для печатных узлов в этих условиях нецелесообразно.
Воздействие пыли и песка заметно сказывается на работе наземной РЭА, в особенности, транспортной. Частицы пыли имеют размеры от 5 до 200 мкм, могут быть абразивными и гигроскопичными. При высокой влажности (свыше 75%) пыль впитывая влагу, становится проводником, а при малой величине влажности (5-10%) частицы пыли электрически заряжаются. Частицы песка состоят, в основном, из округленных зерен кварца со средним диаметром 500мкм.