Реферат: Фальсификация бензинов
Алкены : появление двойной связи в молекуле у/в нормального строения вызывает значительное повышение детонационной стойкости, по сравнению с соответствующими предельными углеводородами.
Циклоалканы : первые представители рядов циклопентана и циклогексана обладают хорошей детонационной стойкостью, особенно это относится к циклопентану. Их приёмистость к ТЭС также очень высока. Эти углеводороды являются ценными составными частями бензина. Наличие боковых цепей нормального строения как у циклопентановых, так и циклогексановых углеводородов приводит к снижению их октанового числа. При этом, чем длиннее цепь, тем ниже октановые числа. Разветвление боковых цепей и увеличение их количества повышают детонационную стойкость циклоалканов.
Арены : почти все простейшие арены ряда бензола имеют октановые числа около 100 и выше. Арены и ароматизированные бензины наряду с разветвленными алканами - лучшие компоненты высокооктановых бензинов. Однако содержание аренов в бензинах следует ограничить примерно до 40 - 50%. Чрезмерно ароматизированное топливо повышает общую температуру сгорания, что влечёт за собой увеличение теплонапряжённости двигателя.
Вышеприведенные данные помогают понять особенности детонационных характеристик типичных компонентов компаундирования. А именно:
В бензинах прямой перегонки нефти содержится много парафиновых углеводородов слабо разветвлённого строения с низкой детонационной стойкостью; октановые числа таких бензинов невелики. Лишь из отдельных «отборных» нефтей можно получить бензины прямой перегонки с октановым числом А-70. Бензины прямой перегонки и их головные фракции используют в небольшом объёме для приготовления автомобильного бензина А-76.
Бензины, полученные каталитическим крекингом , имеют более высокую детонационную стойкость, что обусловлено главным образом увеличением содержания в бензиновых фракциях ароматических и изопарафиновых углеводородов. Антидетонационные свойства бензинов каталитического крекинга зависят от фракционного состава сырья, режима крекинга, состава катализатора и могут колебаться в широких пределах. Бензины каталитического крекинга часто используют как базовые для приготовления товарных высокооктановых бензинов.
Процесс каталитического риформинга позволяет получать бензины с высокой детонационной стойкостью за счёт ароматизации и частичной изомеризации.
При разработке рецептуры товарного бензина следует учитывать, что детонационная стойкость смеси различных компонентов не является аддитивным свойством. Октановое число компонентов в смеси может отличаться от октанового числа этого компонента в чистом виде. Каждый компонент имеет свою смесительную характеристику или, как принято называть, октановое число смешения, причём для данного компонента оно непостоянно, и зависит от массы введённого компонента, состава базового бензина и присутствия других компонентов. Октановые числа смешения газовых бензинов, бензинов прямой перегонки из парафинистого и смешанного сырья некоторых технически чистых углеводородов изостроения обычно близки к их октановым числам в чистом виде. Октановое число смешения высокооктанового компонента обычно тем выше, чем ниже октановое число базового топлива.
При подборе компонентов для приготовления товарных бензинов необходимо обеспечить равномерность распределения октанового числа по фракциям бензина. В бензинах прямой перегонки низкокипящие фракции имеют более высокую детонационную стойкость, чем высококипящие. В бензинах каталитического крекинга октановые числа различных фракций близки между собой. В бензинах платформинга некоторые головные фракции имеют низкую детонационную стойкость, высококипящие ароматизированные фракции имеют октановое число выше 100.
Для получения товарного бензина с равномерным распределением детонационной стойкости по фракциям к бензину платформинга добавляют только тот высокооктановый компонент, который кипит в интервале от 70 до 110-130°С. При составлении рецептур смешения товарных бензинов явление фракционирования необходимо учитывать, а также, следует иметь в виду, что содержание ароматических углеводородов в автомобильных бензинах не должно быть более 45-50%. Это в стандартах не предусмотрено, однако опыт эксплуатации показывает, что такое содержание ароматических углеводородов является оптимальным.
Моторный и исследовательский методы определения октанового числа
Октановое число - характеризует детонационную стойкость бензина, определяется двумя методами.
1) 1-ый принято называть моторным (м.м.). Этим методом определяется детонационная стойкость бензина при длительной работе на номинальных нагрузках, в обозначении бензина этот метод не указывается (А-76).
2) 2-ой метод – исследовательский (и.м.), этим методом определяется детонационная стойкость бензина при неустановившихся режимах (АИ-93, А–автомобильный, И–исследовательский метод определения ОЧ, О.Ч.=93).
Разность ОЧ и.м. - ОЧ м.м. = 2-12 характеризует чувствительность бензина к режиму работы двигателя. Детонационная стойкость топлива выражается октановым числом, которое численно равно содержанию по объему в процентах изооктана в смеси с нормальным гептаном, обладающей эквивалентной данному топливу детонационной стойкостью (например, бензин А-76 имеет детонационную стойкость такую же, как смесь 76% по объему изооктана и 24% - нормального гептана).
АИ-93 и.м. примерно соответствует А-86 м.м . Если использовать бензин с меньшим октановым числом, возрастают нагрузки (жесткое сгорание, детонация) и износ двигателя. Если использовать бензин с большим октановым числом - перегрев и выход из строя маслоотражающих колпачков, резина становится хрупкой от перегрева, расход масла резко возрастает, происходит обгоpание выхлопных клапанов и нарастание нагара на впускном. И их пpогоpание как следствие. В обзоре представлена таблица:
Марка | ГОСТ/ТУ | Октановое число | Октановое число |
А-72 | ГОСТ 2084-77 | 72 | не нормируется |
А-76 | ГОСТ 2084-77 | 76 | не нормируется |
А-80 | ТУ38.001165-87 | 76 | 80 |
АИ-91 | ТУ38.1011225-89 | 82.5 | 91 |
А-92 | ТУ38.001165-87 | 83 | 92 |
АИ-93 | ГОСТ 2084-77 | 85 | 93 |
АИ-95 | ГОСТ 2084-77 | 87 | 95 |
АИ-98 | ГОСТ 2084-77 | 89 | 98 |
Октановые числа определяют следующим образом: специальный двигатель в экспериментальной установке с изменяемой степенью сжатия запускается на исследуемом бензине, и путем изменения степени сжатия и нагрузки достигается начало детонационного сгорания смеси; бензин сливается, и обеспечивается работа этого двигателя на смеси изооктана и гептана при различном их процентном содержании. Как только достигается такое же детонационное сгорание, эксперимент завершается; производится анализ процентного соотношения органических веществ в этой смеси и в данный момент. Процент изооктана показывает октановое число исследуемого бензина.
Антидетонационные добавки для повышения октанового числа товарных бензинов.
Товарные бензины готовят смешением компонентов, полученных прямой перегонкой, крекингом, риформингом, коксованием, алкилированием и др. процессами переработки нефти и нефтяных фракций. Число компонентов, представляющих продукты различных процессов и стадий нефтепереработки, может быть больше десятка. Причём важную роль в процессе получения товарного продукта играет добавление специальных добавок улучшающих свойства бензинов.
Для производства товарного бензина автомобильного марок А-80, А-92 на Омском НПЗ используются следующие компоненты:
- фракции бензиновые по СТП 401402-95, 401104-95 (бензин каталитических установок 43-103 и КТ);
- ароматизированный бензин установок Л-35-11/1000, Л-35-11/600;
- бензин газовый ГФУ-1, ГФУ-2, АГФУ, фракции НК.62°С и НК.80°С АВТ, ФСБ, С-100 КПА;
- бензин коксования с установки 21-10/ЗМ);
- алкилбензин по СТП 401001-93;
- МТБЭ по ТУ 38.103704-90 с изм.1 или СТП 401217-96 (не более 11%);
- этиловая жидкость ГОСТ 988-89 с изм. 1 или импортная марки ТЕЛ-В;
- ингибитор Агидол -12 по ТУ38.302-16-371-88 или Агидол-1 технической марки Б по ТУ 38.5901 237-90 с изм.1.
Таким образом, можно рассмотреть классификацию высокооктановых концентратов, используемых в качестве добавки, повышающей октановое число бензина, в зависимости от природы соединения.
1) Высокооктановые добавки, содержащие свинец;