Реферат: Фармакодинамика
дающая эффект 50 % от максимального при градированных реакциях, а при альтернативных — у 50% исследуемых., Затем экстраполируют полученные данные на больного,
В клинике избирательность приходится определять косвенным путем. Суммируются все случаи побочных явлений; в том числе вынуждавших отменять лечение, и выражаются в процентах ко всем больным, леченным данным препаратом. Более приближенной к клиническим условиям величиной является отношение дозы, которая вызывает токсический эффект у ! % больных и лечебный у 99 %, что может быть выражено какв опытах на животных. В клинике вместо
LD используют токсические дозы LD1/ЕД99. Например, для дигитоксина доза, уменьшающая частоту возникновения фибрилляции предсердий вдвое, является критерием терапевтического действия, а появление рвоты свидетельствует о том, что доза лекарства является токсической. В частности, доза дигитоксина, дающая эффект у 99 %, вызывает рвоту у 3 % больных, поэтому при лечении препаратами дигиталиса необходим индивидуальный подход.
К сожалению, токсические (побочные) явления (головная боль, тошнота) иногда обнаруживаются в клинике после длительного применения лекарства (например, левомицетина) и вовсе не моделируются в эксперименте, что создает большие трудности для их прогнозирования и предотвращения.
Действие лекарства на организм, т. е. фармакологический эффект,
зависит как от химической структуры, физико-химических свойств вещества, так и от особенностей организма и внешней среды, в которой происходит действие данного лекарства. Изменение в ту или иную сторону реакции организма на лекарство может носить групповой, качественный характер. Например, при сенсибилизации организма и появлении аллергических реакций или изменении иммунного статуса такие реакции трудно· прогнозировать; в каждом случае требуется предварительное испытание на больном. Другая часть реакций носит количественный характер и строго специфична для данного лекарства, что следует учитывать при назначении лечения. Конечно, снижение терапевтического эффекта может быть результатом колебаний фармакологических показателей или фармакодинамики. При некоторых видах патологии вычленить фармакокинетические сдвиги довольно легко. Так, при патологии почек нарушается экскреция, при болезнях печени — био
трансформация лекарств, в результате чего действие их усиливается,
но и в этих случаях трудно исключить (иногда очень слабый) фармакодинамический компонент. В связи с этим обычно приходится ориентироваться на суммарные результаты — увеличение или уменьшение реакции организма на лекарство.
Обычно между гомеостазом организма и окружающей средой устанавливается динамическое равновесие, нарушение которого существенно отражается на реактивности организма. Действие лекарств при нарушении равновесия также соответственно моделируется, что необходимо учитывать в эксперименте и клинической практике. Только накопление достаточного количества данных о влиянии факторов окружающей среды на фармакологические эффекты дает возможность регулировать силу воздействия этих факторов на больного и позволяет, проводить по-настоящему рациональную фармакотерапию.
Условно эффекты внешней среды можно разделить на внешние и внутренние. Под внешними понимают изменение внешней среды во время взаимодействия лекарства с организмом (температура, радиация, звук, вибрация, состав воздуха, атмосферное давление, влажность, вода; пища, социальные или зоосоциальные факторы и т. д.), под внутренними — изменения у гомеотермных животных и человека, представляющие собой цегди сложнейших компенсаторных реакций в организме, возникших под влиянием изменений окружающей среды. Эти физиологические, биохимические, биофизические сдвиги порой настолько выражены (например, шок), что могут привести к гибели животных.
В большинстве случаев комбинация внешних и внутренних изменений приводит к нарушению как фармакокинетики (всасывания, времени циркуляции в крови, распределения по органам, биотрансформпции и элиминации лекарства), так и фармакодинамики, в связи с чем сила его действия может понижаться или повышаться в несколько раз.
Внешние условия оказывают влияние на реакцию лекарство — организм и основном с помощью не физико-химического, а физиологиче* скоро и биохимического механизмов.
Следует подчеркнуть, что о естественных условиях, как правило, наблюдаются многофакторные колебании внешних влияний. Например, при подъеме в горы, наряду с уменьшением содержания кислорода, повышается радиация, понижается барометрическое давление, изменяете» влажность воздуха и т. д. Ясно, что такие комплексные колебания условиям внешней среды отражаются на реакции организма к любым раздражителям, и том ЧНСЛС к лекарствам и ядам. При оценке значений того или иного компонента в действии лекарства нужно учитывать и то, ЧТО условно выделяемые нами факторы в свою очередь имеют сложный спектр, например воздух содержит С02, 02, N2, N02, CO К Т, д., соотношение И количество компонентов которых небезразлично для организма, И, наконец, следует учитывать интенсивность воздействии отдельных элементов внешней среды. До определенного уровня МОЖНО выделить специфическое влияние среды на фармакокинетику и фармакодинамику лекарств. С увеличением интенсивности в экстремальных условиях лекарство оказывает воздействие на фоне более менее выраженного стресса или шокового состояния.
Нервная система одна из первых реагирует на изменения окружающей среды, поэтому действие нейротропных веществ при изменении среды заметно моделируется. Одной из таких реакций является действие стимулятора центральной нервной системы фенамина на сгруппированных и одиночных (изолированных) животных. Острая токсичность препарата при внутрибрюшинном введении, по нашим данным, η группе животных в 4 раза выше, чем у изолированных животных. А при чпероральном введении, когда в систему добавляется еще фактор всасывания в пищеварительном аппарате, токсичность фенамина для сгруппированных животных увеличивается в 11 раз. С другой стороны, длительная изоляция животного порождает у него агрессивность, и в таких условиях токсичность %ΗΌ же фенамина для мышей значительно повышается.
Резко влияет на действие лекарств температура окружающей среды. Различия могут быть не только количественными, но и качественными. Например, гидергин, эрготамин и серотонин вызывают у белых крыс гипертермию только при температуре выше 30 °С, при более низкой — гипотермию. Аминазин вызывает гипертермию при температуре выше 36 °С, 2,4-динитрофенол — выше 20 °С; при более низкой — снижается ректальная температура. Важно отметить, что при снижении температуры воздуха с 30 °С до 18°С токсичность аминазина для грызунов повышается почти в 3 раза.
Выраженные реакции возникают при введении атропина и других
холиноблокаторов. В связи с тем что холиноблокаторы нарушают пери
ферическую терморегуляцию путем угнетения потовых желез, введение
их в жаркое время может привести к фатальному исходу. У крыс
гидроксилирование ацетанилида микросомами печени при воздействии
холода повышается в 2 раза, у мышей метаболизм 2-нафтиламина при
воздействии холода ускоряется на 50%, при сочетанном действии
холода и шума — на 100 %.
Влияние температурного фактора на фармакодинамику лекарств необходимо учитывать в клинической практике, поскольку лекарства часто назначают при различных температурных режимах и больным с резко нарушенной терморегуляцией.
Однако даже эффекты лекарства одной фармакологической группы В условиях охлаждения могут быть противоположными. Так; гипотермия понижает нейромышечную блокаду, вызванную тубокурарином, и усиливает ее при введении дитилина.
Своеобразное влияние на действие лекарств оказывает лучевая энергия, После обнаружения фотодинамического эффекта акридина, то есть резкого возрастания отрицательного действия этого красителя на освещенных инфузорий, появилось много сообщений о роли различных видов лучистой энергии (гамма-лучей радиоактивных веществ, рентгеновских лучей, ультрафиолетовой видимой части спектра, инфракрасной радиации) в фармакодинамике лекарств. Установлено, что после курса рентгенотерапии у больных извращается действие кофеина. В первые часы после облучения снижается чувствительность животных к барбитуратам. На фоне лучевой терапии коразол утрачивает свое антидотное действие по отношению к барбитуратам.
Напротив, действие ионизирующей радиации и алкилирующих агентов, в частности противоопухолевых средств, потенцируется. Необходимо также помнить о том, что под влиянием ионизирующей радиации изменяются генетические, обменные процессы, что сопровождается нарушением кинетики ксенобиотика в организме.
Отмечено, что под влиянием ионизирующей радиации угнетается гидроксилирование стероидов, десульфурация глутатиона, образование парных соединений. Эти сдвиги могут быть причиной неожиданного извращенного действия лекарства на всех уровнях. В связи с этим при фармакотерапии больных, подвергшихся лучевой терапии, необходима большая осторожность.
Ультрафиолетовые лучи способствуют превращению холестерина в витамин D, который регулирует обмен кальция и фосфора в организме. Естественно, действие веществ, влияющих на минеральный обмен, при облучении ультрафиолетовыми лучами будет существенно изменяться. Существуют вещества, сенсибилизирующие организм к лучистой энергии. Кроме известных в настоящее время фотосенсибилизаторов (бероксан, аммифурин, псорален), следует назвать красители (эозин, трипафлавин, метиленовый синий и др.), нейротропные средства — барбитураты (барбитал, фенобарбитал) и производные фенотиазина (аминазин и др.), химиотерапевтические вещества (сульфамиды, в том числе и противодиабетические), антибиотики (тетрациклины), противогрибковые (гризеофульвин) и др. Конечно, механизм фотосенсибилизации очень сложен. В одних случаях под влиянием лучистой энергии образуются свободнорадикальные соединения, особенно соединения, содержащие Π-электронную систему, в других — под влиянием лекарства образуется порфирин, вызывающий фотосенсибилизацию; в третьих — возникает комплекс лекарства и белков, активизирующийся светом и трансформирующийся в антиген. На этом основании выделяют фототоксические и фотоаллергические реакции.
Более 100 лет тому назад было высказано предположение, что видимый свет выполняет не только оптическую, но и биологическую роль. Это становится понятным, если учесть, что между третьим нейроном сетчатки и вегетативными ядрами существуют ассоциативные связи. Принимая во внимание связи, существующие между этими ядрами и гипофизом, можно понять механизм влияния некоторых видов монохроматического света на шишковидную, щитовидную и половые железы. Сдвиги вегетативного фона и эндокринного профиля отражаются на колебаниях суточной эффективности лекарств. Известно, что строфантин, диуретические, снотворные, введенные вечером, действуют сильнее, чем в другое время суток. В литературе имеются данные об изменении токсичности в зависимости от биоритмов.
Очевидно, в процессе эволюции живых организмов выработались «биологический день» и «биологическая ночь»;" этим можно объяснить многие сложные процессы действия лекарств при изменении освещенности .ШХ проявления биологической ритмики организма. В опытах па мышах установлено, что токсичность цитостатических средств (оли-помпцинп, 5-фторурацила) утром в 2 раза выше, чем вечером. Эти колебания токсичности хорошо коррелируют с периодичностью митотической активности клеток почек. Утром бетп-адрсноблокаторы действуют сильнее, чем введенные и ТАКОЙ же доля днем.
В последнее время привлекли к себе внимание проблема влияния на биологические процессы, вто?