Реферат: Ферритовые микроволновые устройства для систем с высоким уровнем мощности
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ РАДИОЭЛЕКТРОНИКИ
РЕФЕРАТ
По дисциплине: "Средства ТЗИ микроволнового и оптического диапазонов"
По теме: "Ферритовые микроволновые устройства для систем с высоким уровнем мощности"
Проверил: Щербина А.А.
Выполнил: Ст.гр. СТЗИ-07-1
Харьков 2010
На сегодняшний день разработано и выпускается широкая гамма ферритовых приборов микроволнового диапазона, которые позволяют создавать современные системы, удовлетворяющих нынешним и перспективным требованиям микроволновой электроники, программ космических исследований, работ по физике высоких энергий, систем беспроводной связи и других различных систем микроволнового диапазона. Среди всего многообразия можно выделить наиболее важные и часто применяемые. Именно они и будут рассмотрены ниже.
Циркулятор - многоплечее (многополюсное) устройство для направленной передачи энергии электромагнитных колебаний: энергия, подведённая к одному из плеч, передаётся в другое (строго определённое) плечо в соответствии с порядком их чередования.
Различают электронные и ферритовые циркуляторы. Электронные циркуляторы выполняют на основе дискретных элементов - транзисторов, диодов, резисторов. Действие ферритовых циркуляторов основано на способности ферритов, намагниченных во внешнем постоянном магнитном поле, создавать при взаимодействии с электромагнитным полем (волной) невзаимный фазовый сдвиг, невзаимный поворот плоскости поляризации [1, c.645-646] либо такую комбинацию волн, которая обеспечивает их распространение только в одном из плеч.
Различают следующие ферритовые циркуляторы: фазовый У-циркулятор с сосредоточенными параметрами, применяемый в диапазоне частот от сотен до тысяч Мгц, невзаимный фазовый сдвиг в котором осуществляется при помощи намагниченного ферритового образца и системы индуктивно связанных витков; циркулятор на основе разветвленных прямоугольных или круглых волноводов либо полосковых линий (в т. ч. микрополосковых линий) - У-, Т- и Х-циркулятор с распределёнными параметрами, используемые в диапазоне частот от тысяч до десятков тысяч Мгц, например поляризационный Х-циркулятор (рис.1).
Ферритовые циркуляторы не требуют источника питания, и работают на значительно более высоких мощностях, чем активные. Также выше их рабочий частотный диапазон. При этом на низких частотах, их габариты могут оказаться неприемлемо большими.
Ферритовые Х - и У-циркуляторы используют в антенно-фидерных трактах для переключения антенны или модуля сложной фазированной антенной решётки из режима передачи в режим приёма. Ферритовый У-циркулятор, в котором одно из плеч содержит поглощающую нагрузку, представляет собой разновидность вентиля. Образуя из нескольких У-циркуляторов последовательные (каскадные) соединения, можно получать циркулятор с любым заданным числом плеч; такие системы в сочетании с полосно-пропускающими фильтрами позволяют реализовать устройства для сложения или разделения сигналов с различными несущими частотами с использованием при этом минимального числа фильтров.
Рис.1 Поляризационный циркулятор на основе отрезка волновода с круглым сечением
На рисунке 1, 2, 3, 4 - плечи циркулятора в виде отрезков стандартных волноводов с прямоугольным сечением, расположенных под углом 45° последовательно по отношению друг к другу; пунктиром изображён ферритовый образец, обеспечивающий поворот плоскости поляризации волны на 45° в направлении, указанном стрелкой, в результате энергия, если её подвести к плечу 4, поступает только в плечо 1, к плечу 3 - только в плечо 4 т.д.
Главными характеристиками циркулятора являются его вносимые прямые потери Aпр = P1+ / P2 - = P2+ / P3 - = P3+ / P1 - и обратные потери (развязка) Aобр = P1+ / P3 - = P2+ / P1 - = P3+ / P2- . Пример приведён для трёхплечевого циркулятора (Y-циркулятора), знак плюс относится к мощностям, вводимым в циркулятор, а знак минус - к выводимым. В рабочем диапазоне частот хороший циркулятор обладает обычно следующими параметрами: Aпр ≤ 0,5 дБ; Aобр ≥ 30 дБ.
Также выделяют такие характеристики, как рабочая частота (длина волны), полоса пропускания, предельная рабочая мощность, диапазон рабочих температур, способ включения в тракт (вид разъёмов), массогабаритные показатели, устойчивость к внешнему постоянному магнитному полю, срок службы (обусловлен старением постоянного магнита).
Ферритовый вентиль - устройство с односторонним прохождением электромагнитной волны, то есть с очень малым затуханием волны, проходящей в одном направлении и очень большим - для волны обратного направления.
Вентили применяют для поглощения отраженных волн в линии передачи, улучшая тем самым согласование различных элементов цепи. Их эффективность определяется вентильным отношением В, то есть отношением ослаблений обратной и прямой волн, выраженным в децибелах:
B = αобр / αпр | (1.1) |
где α - коэффициенты затухания обратной и прямой волны.
Принцип действия вентилей основан на том, что намагниченная ферритовая пластина является невзаимной средой. То есть при прямом прохождении волны вектор ее поляризации поворачивается из положения А в положение А΄, а при обратном прохождении, он не возвращается в исходное положение А
Наиболее широко применяются вентили трех типов: резонансные, со смещением поля и фарадеевские.
Вентиль с резонансным поглощением на прямоугольном волноводе ( рис.2) с волной типа H10 основан на использовании поперечно намагниченной ферритовой вставки 1, расположенной в области волновода с вращающимся полем .
Рис.2 Волноводный резонансный вентиль
1 - ферритовая вставка; 2 - постоянный магнит; 3 - диэлектрическая пластина
Поперечное поле подмагничивания создают постоянным магнитом 2, причём величину поля подбирают равной полю гиромагнитного резонанса для право поляризованной волны. Падающая волна, при прохождении которой на феррит действует вектор H с левым вращением относительно поля подмагничивания, распространяется через вентиль с небольшим затуханием. Отражённая волна, при прохождении которой на феррит действует правовращающийся вектор , интенсивно затухает из-за больших потерь в феррите при гиромагнитном резонансе.
Поле подмагничивания необходимое для существования гиромагнитного резонанса, и требуемое положение ферритовой пластины в волноводе зависят от частоты, что ограничивает диапазонные свойства резонансного вентиля. Расширить рабочую полосу частот резонансного вентиля удаётся с помощью диэлектрической пластины 3, скрепленной с ферритовой пластиной. Диэлектрическая пластина способствует сохранению в полосе частот условий вращения вектора в зоне расположения феррита.
Основную долю прямых потерь составляют магнитные потери в феррите, появляющиеся вследствие ферромагнитного резонансного поглощения (рис.3).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--