Реферат: Физическая концепция естествознания
Микроорганический
Органы и ткани
Организм в целом
Популяция
Биогеоценоз
Биосфера
Индивид
Семья
Коллективы
Большие социальные
группы (классы, нации)
Государство
(гражданское общество)
Системы государства
Человечество в целом
Ноосфера
Индивид. Жизнь всегда представлена в виде дискретных индивидуумов. Это в равной мере присуще микроорганизмам, растениям, грибам и животным, хотя в указанных царствах индивиды имеют различное морфологическое содержание. Так, одноклеточные состоят из ядра, цитоплазмы, множества органелл и мембран, макромолекул и т.д. Сложность индивидуума у многоклеточных во много раз выше, поскольку он образован из миллионов и миллиардов клеток. Но одноклеточная и многоклеточная особи обладают системной организацией и регуляцией и выступают как единое целое. Индивид (индивидуум, особь) - элементарная неделимая единица жизни на Земле. Разделить индивид на части без потери "индивидуальности" невозможно. Конечно, в ряде случаев вопрос об определении границ индивида, особи не столь прост и самоочевиден. С эволюционной точки зрения индивидуумом следует считать все морфофизиологические единицы, происходящие от одной зиготы, гаметы, споры, почки и индивидуально подлежащие действию элементарных факторов. На онтогенетическом уровне единицей жизни служит индивид с момента ее возникновения до смерти. Через оценку индивидуума в процессе естественного отбора происходит проверка жизнеспособности данного генотипа. Индивиды в природе не абсолютно изолированы друг от друга, а объединены более высоким рангом биологической организации на популяционно-видовом уровне. [2, с.117].
Вид. Сущность биологической концепции вида заключается в признании того, что виды реальны, состоят из популяций, а все особи вида имеют общую генетическую программу, которая возникла в ходе предшествующей эволюции. Виды определяются не столько различиями, сколько обособленностью. Из биологической концепции вида вытекают критерии, позволяющие отличать один вид от другого: 1. Морфологический критерий вида есть характеристика особенностей строения, совокупность его признаков. Очень важно для вида обнаружение разрыва в непрерывном изменении признака.2. Генетический критерий утверждает, что каждый вид имеет свойственный ему набор хромосом, характеризующийся определенным числом хромосом, их структурой и дифференциальной окраской.3. Эколого-географический критерий вида включает как ареал обитания, так и непосредственную среду обитания вида - его экологическую нишу.4. К важнейшей характеристике вида, размножающегося половым путем, относится репродуктивная изоляция. Она является результатом эволюции всей генетической системы данного вида и охраняет его от проникновения генетической информации извне. Итак, каждый критерий в отдельности недостаточен для определения вида, только в совокупности они позволяют точно выяснить видовую принадлежность живого организма. Наиболее существенной характеристикой вида является то, что он представляет собой генетически единую систему. [2, с.117]
Таким образом, вид - совокупность географически и экологически близких популяций, способных в природных условиях скрещиваться между собой, имеющих единый генетический фонд, обладающих общими морфофизиологическими признаками, биологически изолированных от популяций других видов.
Популяция. Совокупность особей одного вида, длительно населяющих определенное пространство, размножающихся путем свободного скрещивания и в той или иной степени изолированных друг от друга, называют популяцией. В генетическом смысле популяция - это пространственно-временная группа скрещивающихся между собой особей одного вида. Популяция является элементарной биологической структурой, способной к эволюционным изменениям. Популяции оказываются элементарными единицами, а виды - качественными этапами процесса эволюции. Совокупность генотипов всех особей популяции образует генофонд. Популяции и виды, несмотря на то что состоят из множества особей, целостны. Целостность популяций и видов связана с взаимодействием особей в популяциях и поддерживается обменом генетического материала в процессе полового размножения. Популяции и виды всегда существуют в определенной среде, включающей как биотические, так и абиотические компоненты. Конкретная среда протекания процесса эволюции, идущего в отдельных популяциях, - сообщество, биоценоз. [2, с.118]
Сообщество. Популяции разных видов всегда образуют в биосфере Земли сложные сообщества - биоценозы. Биоценоз - совокупность растений, животных, грибов и прокариот, населяющих участок суши или водоема и находящихся в определенных отношениях между собой. Вместе с конкретными участками земной поверхности, занимаемыми биоценозами, и атмосферой сообщество составляет экосистему. Экосистема - взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом веществ и энергий. Биогеоценоз - это такая экосистема, внутри которой не проходят биогенетические, микроклиматические, почвенные и гидрологические границы. Биогеноценоз - одна из наиболее сложных природных систем. Внешне заметные границы биогеоценозов чаще всего совпадают с границами растительных сообществ. Все группы экосистемы - продукт совместного исторического развития видов, различающихся по систематическому положению. Первичной основой для сложения биогеоценозов служат растения и прокариоты - продуценты органического вещества (автотрофы). В ходе эволюции до заселения растениями и микроорганизмами определенного пространства биосферы не могло быть и речи о заселении его животными. Растения и прокариоты представляют жизненную среду для животных-гетеротрофов. Биогеоценозы - среда для эволюции входящих в них популяций. Популяции разных видов в биогеоценозах воздействуют друг на друга по принципу прямой и обратной связи. В целом жизнь биогеоценоза регулируется в основном силами, действующими внутри самой системы, т.е. можно говорить о саморегуляции биогеоценоза. Автономность и саморегуляция биогеоценоза определяют его ключевое положение в биосфере нашей планеты как элементарной единицы на биогеоценотическом уровне.
Биосфера. Взаимосвязь разных сообществ, обмен между ними веществом и энергией позволяют рассматривать все живые организмы Земли и среду их обитания как одну очень протяженную и разнообразную экосистему - биосферу. Биосфера - те части земных оболочек (лито-, гидро - и атмосферы), которые на протяжении геологической истории подвергались влиянию живых организмов и несут следы их жизнедеятельности. Биогеоценозы, образующие в совокупности биосферу нашей планеты, взаимосвязаны круговоротом веществ и энергии. В этом круговороте жизнь на Земле выступает как ведущий компонент биосферы. Биогеоценоз представляет собой незамкнутую систему, имеющую энергетические "входы" и "выходы", связывающие соседние биогеоценозы. Обмен веществ между соседними биогеоценозами может осуществляться в газообразной, жидкой и твердой фазах, а также в форме живого вещества (миграции Животных). Кроме живого вещества в составе биосферы есть косное (неживое) вещество, а также сложные по своей природе биокосные тела. В их состав входят как живые организмы, так и видоизмененное неживое вещество. К биокосным телам относятся почвы, илы, природные воды. [2, с.119]
2. Взаимодействие структур в микро и макромирах
Многие основополагающие концепции современного естествознания прямо или косвенно связаны с описанием фундаментальных взаимодействий. Взаимодействие и движение - важнейшие атрибуты материи, без которых невозможно ее существование. Взаимодействие обусловливает объединение различных материальных объектов в системы, т.е. системную организацию материи. Многие свойства материальных объектов производны от их взаимодействия, являются результатом их структурных связей между собой и взаимодействий с внешней средой.
В природе существуют качественно различные системы связанных объектов. Ядра - связанные системы протонов и нейтронов; атомы - связанные ядра и электроны; макротела - совокупность атомов и молекул; Солнечная система - связка" планет и массивной звезды; галактика - "связка" звезд. Наличие связанных систем объектов говорит о том, что должно существовать нечто такое, что скрепляет части системы в целое. Чтобы "разрушить" систему частично или полностью, нужно затратить энергию. Взаимное влияние частей системы или структурных единиц происходит посредством полей (гравитационного, электрического, магнитного и других) и характеризуется энергией взаимодействия. В настоящее время принято считать, что любые взаимодействия каких угодно объектов могут быть сведены к ограниченному классу четырех основных фундаментальных взаимодействий: сильному, электромагнитному, слабому и гравитационному (в том числе и между элементарными частицами). Интенсивность взаимодействия принято характеризовать с помощью так называемой константы взаимодействия, которая представляет собой безразмерный параметр, определяющий вероятность процессов, обусловленных данным видом взаимодействия. [2, с.134]
Отношение значений констант дает относительную интенсивность соответствующих взаимодействий (табл.2). Кратко охарактеризуем каждый из этих четырех видов взаимодействий: гравитационное, электромагнитное, сильное, слабое. [2, с.134]
Гравитационные взаимодействия (тяготения). Притяжение тел к Земле, существование Солнечной системы, звездных систем (галактик) обусловлено взаимодействием сил тяготения, или иначе - гравитационными взаимодействиями. Эти взаимодействия универсальны, т.е. применимы к любым микро - и макрообъектам. Однако они существенны лишь для тел огромных астрономических масс и для формирования структуры и эволюции Вселенной как целого. Гравитационные взаимодействия очень быстро ослабевают для объектов с малыми массами и практически не играют роли для ядерных и атомных систем. Проявления гравитации количественно были изучены одними из первых. Это не случайно, ибо источником гравитации являются массы тел, а дальность гравитационного взаимодействия не ограничена. Константа взаимодействия имеет значение порядка 10-39. Радиус действия не ограничен (г = ∞). Гравитационное взаимодействие является универсальным, ему подвержены все без исключения элементарные частицы. Однако в процессах микромира гравитационное взаимодействие ощутимой роли не играет. Характеристики видов взаимодействий приведены в табл.2.
Электромагнитное взаимодействие связано с электрическими и магнитными полями. Электрическое поле возникает при наличии электрических зарядов, а Магнитное поле - при их движении. В природе существуют как положительные, так и отрицательные заряды, что и определяет характер электромагнитного взаимодействия. Например, при движении зарядов в зависимости от их знака и направления движения между ними возникает либо притяжение, либо отталкивание. Различные агрегатные состояния вещества, явление трения, упругие и другие свойства вещества определяются преимущественно силами межмолекулярного взаимодействия, которое по своей природе является электромагнитным. Электромагнитное взаимодействие описывается фундаментальными законами электростатики и электродинамики: законом Кулона, законом Ампера и др. Его наиболее общее описание дает электромагнитная теория Максвелла, основанная на фундаментальных уравнениях, связывающих электрическое и магнитное поля. Константа взаимодействия равна 10-3. Радиус действия не ограничен (г = ∞).
Сильные (ядерные) взаимодействия. Наличие в ядрах одинаково заряженных протонов и нейтральных частиц говорит о том, что должны существовать взаимодействия, которые гораздо интенсивнее электромагнитных, ибо иначе ядро не могло образоваться. Эти взаимодействия (их называют сильными), проявляются лишь в пределах ядра. Этот вид взаимодействия обеспечивает связь нуклонов в ядре. Константа сильного взаимодействия имеет величину порядка 1. Наибольшее расстояние, на котором проявляется сильное взаимодействие (радиус действия г), составляет примерно 10-13 см.
Слабое взаимодействие. Это взаимодействие ответственно за все виды β-распада ядер (включая е-захват), за многие распады элементарных частиц, а также за все процессы взаимодействия нейтрино с веществом. Константа взаимодействия равна по порядку величины 10-15. Слабое взаимодействие, как и сильное, является короткодействующим. Как отмечалось, из большого списка элементарных частиц только электрон, протон, фотон и нейтрино всех типов являются стабильными. Под влиянием "внутренних причин" нестабильные свободные частицы за те или иные характерные времена превращаются в другие частицы. Медленные распады с характерным временем 10-10-10-6с происходят за счет так называемого слабого взаимодействия, тогда как быстрый распад (10-16с) происходит под влиянием электромагнитных взаимодействий. [2, с.135]