Реферат: Физическая сущность магнитно-электрического упрочнения

Таким образом, МИО представляет собой комплексное воздействие на материал магнитострикционных процессов и механических деформаций, тепловых и электромагнитных вихревых потоков, локализованных в местах концентраций магнитного потока, а также систему процессов, направленно ориентирующих "спин-характеристики" внешних электронов атомов металлов пограничной зоны контакта зерен (перегруженного участка кристаллита). В целом МИО предусматривает сочетание электромагнитного и термодинамического способов управления (в соотношении примерно 1: 1) неравновесной структурой вещества. Причем чем больше физических "несовершенств" и технологических "неоднородностей", связанных с процессом изготовления детали (инструмента), тем выше эффективность МИО. Для подтверждения этого изучали изменение теплопроводности и магнитных характеристик быстрорежущих (Р12, Р9, Р6М5 и др.) и конструкционных (40, 40ХН, ЗОХГС, 65, 70 и т.п.) сталей при МИС с напряженностью поля до 4000 кА/м.

Основные опыты проводились с образцами из стали Р6М5 аналоговым» и электронными методами. Применялась усовершенствованная универсаль ная установка УЭМ.2Б-82 - ТЭИМ-0 01 с блоками ЭПП-0 93М для изме рения комплексных характеристик стальных образдов. функциональная схема установки, предназначенной для измерения теплопроводности электросопротивления и магнитной проводимости металлических образ цов, и устройство ячейки показаны на рис. 6. Особенностью установки является возможность одновременного измерения физического параметра по семи каналам (семь датчиков на один образец), что в 5...7 раз повышает точность опытов и позволяет изучать изменение теплопроводности электропроводимости и магнитного насыщения при МИО самых различных материалов.

Рис.6. Схема установки для измерения теплопроводн ости, электросопротивлен ия и магнитн ой проводимости материалов электронными методами (а):

1 - усилитель; 2 - электронный преобразователь; 3 — датчик импульсов; 4 - устройство для измерения теплопроводности; 5 - устройство для контроля электропроводности; 6 - блок измерения магнитопроводности; 7 - рабочая ячейка (образец) из стали Р6М5; 8 - блок информации (устройство, выдающее значения эл ектропроводности, магнитных характеристик, а также теплопроводности образцов);

устройство ячейки для одновременного измерения параметров (б) :

1 - стальной образец; 2 - цилиндр из изолирующего материала (стекла или керамики); 3 - датчики (7 шт.) для измерения параметров

Для улучшения механических свойств конструкционных сталей напряженность поля МИО не должна превышать 1000...1500 кА/м. В этом случае ударная вязкость, сопротивление усталости, временное сопротивление на растяжение, предел прочности на изгиб и другие свойства стали возрастают не менее чем на 10...20%.

Обработка статистического материала лабораторных исследований н ЭВМ по влиянию МИО на механические и технологические свойства кон струкционных, углеродистых и быстрорежущих сталей показала, что МИС повышает также динамическую прочность стали в диапазоне температур 100... 600 °С на 10...40 %.

Испытывалось влияние МИО на некоторые физические и механические свойства образцов из твердых сплавов. Результаты некоторых опытов приведены в табл. 2. За счет МИО теплопроводность твердых сплавов повышается не менее чем на 10.%, а временное сопротивление на изгиб на 15... 20%, что обусловливает снижение выкрашивания зерен из режущей кромки инструмента при резании металлов и сплавов.


Литература

Малыгин Б.В. Магнитное упрочнение инструмента и деталей машин. – М.:Машиностроение, 1989. – 112 с.: ил.

К-во Просмотров: 203
Бесплатно скачать Реферат: Физическая сущность магнитно-электрического упрочнения