Реферат: Физические процессы в проводниках и их свойства
На высоких частотах имеет место неравномерное распределение плотности тока по сечению проводника; плотность тока максимальна на поверхности и убывает по мере проникновения вглубь проводника. Это явление получило название поверхностного эффекта (скин - эффекта).
При прохождении переменного тока переменное магнитное поле возникает внутри и вокруг проводника. Потокосцепление максимально для центральных частей проводника и минимально для поверхностных слоев. Поэтому э.д.с. самоиндукции, направление которой противоположно направлению тока, максимальна в центре проводника и затухает в направлении к поверхности. Соответственно и плотность тока наиболее сильно ослабляется в центральных частях проводника и в меньшей степени у поверхности. С ростом частоты "вытеснение" тока к поверхности проводника проявляется сильнее, так как э.д.с. самоиндукции пропорциональна частоте.
Распределение тока по сечению проводника
J(z) = J0 e (-z/D ),
где J0 - плотность тока на поверхности,
D - глубина проникновения поля в проводник, численно равна расстоянию, на котором плотность тока уменьшается в 2.7 раз по отношению к своему значению на поверхности проводника.
Величина D и эффективное сечение проводника Sэ уменьшаются при увеличении магнитной проницаемости m и удельной проводимости s.
;
,
где m0 - сечение проводника;
P - периметр проводника.
Активное сопротивление проводника R~ при прохождении по нему переменного тока больше, чем его активное сопротивление R0 , при постоянном токе
где d - диаметр провода круглого сечения D<< d.
Cопротивление тонких металлических пленок
Металлические пленки широко используются в микроэлектронике в качестве межсоединений, контактных площадок, обкладок конденсаторов, магнитных и резистивных элементов ИМС. Электрические свойства тонких пленок металлов и сплавов могут отличаться от свойств объемных образцов исходных материалов. Причинами этого являются: более мелкозернистая структура пленки и более высокая концентрация дефектов, а также проявление размерных эффектов, когда при толщине пленки d соизмеримой со средней длиной свободного пробега электронов lср, возрастает роль поверхностных процессов по сравнению с объемными.
У большинства пленок в функциональной зависимости r(d) наблюдается три различные области.
Область I, соответствующая малой толщине порядка 10-3 мкм, характеризуется очень высоким удельным сопротивлением и отрицательным ar. Пленки имеют островковую структуру. При наличии электрического поля в результате термоэлектрической эмиссии и туннелирования электроны переходят через диэлектрические зазоры между соседними островками. С ростом температуры облегчается переход электронов и падает поверхностное сопротивление проводников. Эти причины и обусловливают отрицательный ar. При увеличении количества осажденного металла величина зазора между островками уменьшается, проводимость пленок растет, модуль ½ar½ уменьшается, а затем он меняет знак. Это происходит при толщине пленки несколько нм .
Область II включает диапазон изменения d от 10-1 до 10-2 мкм. Происходит слияние островков, образование проводящих цепочек и каналов, а затем - сплошного однородного слоя. Но в сплошной пленке присутствует высокая концентрация дефектов - вакансий, дислокаций, границ зерен, примесей остаточных газов, что уменьшает lср и увеличивает удельное сопротивление пленки rs по сравнению с r объемного образца.
Область III характеризует свойства пленок толщиной больше 10-1 мкм, здесь также rs > r.
Используя правило Маттисена можно записать:
rs = rмз + rпр +rр
где rмз - характеризует рассеяние в толщине зерна, rмз=r;
rпр - характеризует рассеяние в прослойке между зернами;
rр - характеризует рассеяние электронов на поверхности пленки.
С ростом температуры величина rмз увеличивается, (ar> 0), rпр уменьшается по экспоненциальному закону (arпр < 0), а значение rр не зависит от температуры. Изменяя технологические режимы нанесения пленок, можно изменять величину температурного коэффициента сопротивления.
Полагая, что процессы рассеяния в объеме и на поверхности пленки статистически независимы, для длины свободного пробега электронов справедливо выражение:
1/ls = 1/lср + 1/ls
где lср и ls - длина свободного пробега при рассеянии в объеме и на поверхности.