Реферат: Физические свойства вакуумно-плазменных покрытий для режущего инструмента
В-четвертых, требования, относящиеся к покрытиям в целом: покрытие должно быть сплошным и иметь постоянную плотность по всему объему, тем самым, защищая материал инструмента от соприкосновения с обрабатываемым
материалом и газовой средой; стабильность свойств покрытия во времени; малость колебаний толщины покрытия в процессе работы, позволяющая не изменять рельеф материала инструмента [5-11].
5. Способы нанесения износостойких покрытий.
Процесс нанесения покрытия на поверхность режущего инструмента определяется как свойствами материала покрытия и инструмента, так и спецификой протекания процессов формирования покрытия. Исходя из выше сказанного, все методы нанесения покрытий можно разделить на две группы.
В первую группу входят методы химического осаждения покрытий из парогазовой фазы (ХОП) [11]. Формирование покрытия осуществляется вследствие химических реакций между парогазовыми смесями, состоящих из соединения металлоносителя и носителя второго компонента, являющегося как газотранспортером, так и восстановителем. В процесс формирования покрытия вносят вклад и структура поверхности инструментального материала, и гетеродиффузионные реакции между конденсатом и материалом инструмента. Этот метод применяется при нанесении покрытий на основе карбидов, нитридов, карбонитридов титана, оксида алюминия. Метод ХОП реализуется при температурах 1000-1100 о С, этот факт исключает возможность нанесения покрытий данным методом на инструменты из быстрорежущих сталей, которые были подвергнуты термической обработке [6].
Существует ряд недостатков метода ХОП:
- взрывоопасность и токсичность водорода, как газа-носителя
- наличие большего количества непрореагировавших компонентов
- сложность технологического оборудования
- внутреннее напряжение в слое покрытия
- невозможность нанесения покрытия на инструмент, имеющий острые режущие кромки
Вторая группа – это методы физического осаждения покрытий (ФОП) [6]. К этим методам относятся: метод получения тонких пленок распылением материалов ионной бомбардировкой (РИБ); метод генерации потока
??????????? ???????? ??????????? ?????????? (???).
Суть метод РИБ состоит в следующем:
1) В вакууме, под действием ионизирующего излучения заданной энергии, осуществляется бомбардировка материала, формирующего покрытие (мишень), что приводит к частичной или полной его ионизации. В качестве данного материала могут выступать металлы (включая тугоплавкие), сплавы (в том числе и многокомпонентные), полупроводники.
2) Происходит ионное распыление, то есть ионы материала падают на рабочую поверхность режущего инструмента (подложку), тем самым, производя процесс формирования покрытия.
Данный метод реализуется при давлениях 1-10 Па и напряжениях 0,3-
5 кВ.
Возможны два метода ионного распыления: ионно-лучевое и плазмоионное распыление. При ионно-лучевом распылении выбивание атомов мишени происходит под действием бомбардировки ее поверхности ионными лучами определенной энергии (Рис.1). Тут не требуется подача на мишень отрицательного потенциала.
При плазменном распылении мишень из распыляемого материала находится в сильно ионизированной плазме под отрицательным потенциалом и играет роль катода. Положительные ионы под действием электрического поля вытягиваются и бомбардируют мишень, вызывая ее распыление.
Существуют следующие разновидности плазменного распыления: катодное, магнетронное, высокочастотное и в несамостоятельном газовом разряде.
Катодное распыление .Принципиальная схема установки приведена на рис. 2. Метод осуществляется следующим образом.
Вакуумный объем, содержащий анод и катод, откачивается до давления 10-4 Па, после чего производится напуск инертного газа (обычно это Ar при давлении 1-10 Па). Для зажигания тлеющего разряда между катодом и анодом подается высокое напряжение 1-10 кВ. Положительные ионы инертного газа, источником которого является плазма тлеющего разряда, ускоряются в электрическом поле и бомбардируют катод, вызывая его распыление. Распыленные атомы попадают на подложку и оседают в виде тонкой пленки.
Данный метод распыления может быть осуществлен и по другой схеме – диодной схеме распыления, отличительным признаком которой является то, что при распылении катод является как источником распыляемого материала, так и источником электронов, поддерживающих разряд, анод также принимает участие в создании заряда, одновременно являясь подложкодержателем.
Преимущества метода катодного распыления в следующем:
- безынерционность процесса
- низкие температуры процесса
-
??????????? ????????? ?????? ??????????? ???????? ? ??????? (? ??? ????? ? ?????????????????)
- сохранение стехиометрического исходного материала при напылении
- возможность получения равномерных по толщине пленок