Реферат: Физико-химические основы коагулирования примесей воды

Одним из наиболее широко применяемых на практике приемов снижения содержания взвеси в воде является седиментация под действием сил тяжести. Однако, примеси, обусловливающие мутность и цветность природных вод, отличаются малыми размерами, вследствие чего их осаждение происходит крайне медленно, так как силы диффузии превалируют над силами тяжести. Кроме того, наличие примесей коллоидного характера еще более осложняет процесс седиментации. Для ускорения процессов осаждения, фильтрования, флотации и повышения их эффективности прибегают к коагулированию примесей воды.

Коагуляцией примесей воды называется процесс укрупнения коллоидных и взвешенных частичек дисперсной системы, происходящей в результате их взаимодействия и объединения в агрегаты. Завершается этот процесс отделением агрегатов слипшихся частичек от жидкой фазы.

Диспергированные, коллоидные и взвешенные частички примесей природных вод в большинстве случаев имеют одинаковые заряды, что обусловливает возникновение межмолекулярных сил отталкивания и агрегативную устойчивость. Поскольку в технологии очистки воды предусматривается частичное или полное удаление примесей, агрегативную устойчивость частичек стремятся нарушить, а заряд их устранить или снизить до очень малых значений. Этого достигают добавлением к воде сульфатов алюминия, железа (II) и железа(III), хлорида алюминия, хлорида железа(III), алюмината натрия, оксихлорида алюминия и других веществ, которые, являясь коагулянтами, либо нарушают агрегативную устойчивость системы, либо образуют вследствие гидролиза коллоиды, сорбирующие примеси из воды.

Коллоидные примеси, находящиеся в природной воде, позволяют рассматривать ее как гетерофазную систему, в которой вода является дисперсионной средой, а масса распределенных в воде коллоидных частичек — дисперсной фазой. Эти частички представляют собой очень мелкие агрегаты кристаллического или аморфного строения. Благодаря огромной удельной поверхности коллоидных частичек они обладают весьма значительной поверхностной энергией, а следовательно, и высокой адсорбционной емкостью. Это обстоятельство имеет большое значение, поскольку основной процесс обработки воды — коагулирование — связан с адсорбцией на коллоидных частичках примесей, содержащихся в воде.

Возникновению коллоидных частичек предшествует образование твердой фазы (ядра), адсорбирующей из растворов потенциалобразующие ионы. Сильнее адсорбируются ионы, которые больше понижают свободную энергию поверхности твердой фазы. В результате поглощения ионов поверхность ядра приобретает заряд. Находящиеся в растворе разноименно заряженные ионы (противоионы) собираются у поверхности ядра вследствие электрического притяжения между разноименными электрическими зарядами, образуя коллоидную частичку. Если бы в растворе не было теплового движения, приводящего к перемещению ионов, противоионы образовали бы мономолекулярный слой (рис. 3.1,б), охватывающий коллоидную частичку на расстоянии ионного радиуса. Термодинамический потенциал у такого двойного слоя является потенциалом между твердой фазой и жидкостью. В действительности упорядоченное строение оболочки нарушается в результате теплового движения ионов в растворе, а слой окружающих частичку противоионов приобретает диффузный характер (см. рис. 3.1, а).

Коллоидная частичка вместе с окружающим ее диффузным слоем называется мицеллой. На рис. 3.2 представлена схема строения мицеллы золя Fe(OH)3, полученного вследствие гидролиза FeCl3. Золь — система, состоящая из коллоидных частичек, распределенных в жидкой среде. Если такой средой является вода, система называется гидрозолем. Как видно из рис. 3.2, мицелла Fe(OH)3 состоит из ядра, образованного молекулами Fe(OH)3, адсорбционносвязанных с ним потенциалобразующих водородных ионов (Н+) и некоторого количества ионов хлора С1 меньшего, чем количество ионов Н+, в результате чего коллоидная частичка имеет положительный заряд. Ионы Н+ и входящие в состав частички противоионы С1- образуют двойной электрический слой. Отдельные ионы хлора (С1-) образуют диффузный слой и вместе с коллоидной частичкой составляют мицеллу золя Fe(OH)3

В зависимости от условий образования золя потенциаловра- зующие ионы и противоионы могут меняться местами.

Золь А1(ОН)3, образующийся при гидролизе солей алюминия, заряжен положительно при низких значениях рН воды и отрицательно — при высоких. Поверхность коллоидной частички золя приобретает заряд в результате нескольких возможных процессов: в щелочной среде кристаллическая решетка частички достраивается гидроксильными ионами, находящимися в воде, приобретая отрицательный заряд; в нейтральной и кислых средах — положительный заряд, который возникает за счет адсорбции решеткой ионов А13+.

При гидролизе растворов Al2(S04)3 потенциалобразующими ионами и противоионами будут соответственно ионы А13+ и S042-.

Известно, что коллоидные частички находятся в постоянном движении. При этом часть окружающего частичку раствора увлекается и движется вместе с ней в виде тонкой пленки. На рис. 3.1, а линия 00 представляет поверхность коллоидной частички, непосредственно возле которой расположены положительные ионы двойного слоя, а далее ионы диффузного слоя, ограниченные на рисунке линией CD, являющейся границей электронейтрального комплекса мицеллы. При движении коллоидная частичка в электрическом поле увлекает часть раствора, ограниченную на рисунке линией АВ, а часть ионов диффузного слоя, расположенных между линиями АВ и CD, отрывается от частички. При этом она становится отрицательно заряженной, а окружающий ее раствор приобретает положительный заряд. Скачок потенциала, возникающий при этом между частью жидкости, увлекаемой коллоидной частичкой, и остальным раствором, называется электрокинетическим, или потенциалом.

g-потенциал изменяется при прибавлении к коллоидным системам электролитов. Для отрицательно заряженных частичек потенциал зависит от величины заряда катионов электролита, а для положительно заряженных частичек — от величины заряда анионов.

С прибавлением электролитов концентрация ионов в диффузном слое увеличивается, и для компенсации зарядов на поверхности частичек требуется меньший объем диффузного слоя (т. е. происходит как бы его сжатие). Сжатие может дойти до такой степени, что диффузный слой не будет выходить за пределы линии, ограничивающей поверхность скольжения коллоидной частички при ее движении (см. рис. 3.1,б линия АВ). Когда диффузный слой сожмется до размера, ограниченного линией АВ, g-потенциал станет равным нулю. В этот момент коллоидные частички будут находиться в изоэлектрическом состоянии (изоэлектрическим состоянием называется состояние золя, при котором коллоидные частички не имеют электрического заряда). В результате устранятся причины, препятствовавшие их сближению, коллоидные частички, соединяясь, образуют сравнительно крупные агрегаты, которые начинают осаждаться.

При добавлении электролита к коагулируемому коллоиду можно заметить, что коагуляция начинается не в изоэлектрической точке, а при значении потенциала 0,03 В (значение потенциала для большинства коллоидов обычно составляет 0,07 В). Это значение потенциала является мерой устойчивости коллоидных систем и называется критическим; с его уменьшением устойчивость коллоидной системы снижается.

Изменение значения g-потенциала при сжатии диффузного слоя показано на рис. 3.3 (по оси абсцисс отложены расстояния от поверхности частички, по оси ординат — значения потенциалов). Степень влияния ионов зависит от их концентрации, валентности и размеров: чем выше концентрация ионов и их валентность, тем больше сжатие диффузного слоя, а следовательно, тем сильнее эти ионы снижают устойчивость коллоидных частичек.

Так происходит коагуляция гидрофобных золей, обусловленная адсорбцией ионов и созданием двойного электрического слоя на поверхности коллоидных частичек. Их устойчивость в растворе определяется гидратацией ионов и влиянием зарядов поверхности на ориентированную адсорбцию дипольных молекул воды. Эти гидратные слои полностью зависят от ионных взаимодействий и при электролиткой коагуляции не препятствуют слипанию частичек.

Совершенно иной характер устойчивости имеют гидрофильные золи, природа поверхности частичек которых обусловливает образование молекулярных сольватных слоев при участии вандерваальсовских, водородных и комплексных связей, вне зависимости от действия растворов электролитов небольших концентраций. Высокоочищенные золи H2SiO3 и А1(ОН)3 могут сохраняться в растворе даже при снижении g-потенциала почти до нуля.

Значение гидратных слоев объяснено тем, что для сближения коллоидных частичек необходимо затратить работу на преодоление сопротивления так называемого «расклинивающего давления», обусловленного силами молекулярного сцепления воды с поверхностью частичек. На расстоянии 1 нм и меньше силы взаимного притяжения частичек преобладают над силами сцепления в гидратном слое. При больших расстояниях гидратные слои являются термодинамически устойчивым стабилизирующим фактором.

Аналогично влияют поверхностно-активные вещества. Изменение гидрофильности поверхности частичек в данном случае зависит от ориентации молекул поверхностно-активных веществ в адсорбционном слое. Увеличение гидрофильности и возрастание устойчивости коллоидных частичек в водных системах наблюдается, если полярные группы адсорбированных соединений обращены в сторону дисперсионной среды. Ориентация приобретает особое значение при образовании молекулами поверхностно-активных веществ в адсорбционных слоях двухмерных гелеобразных структур, обладающих повышенными структурно-механическими свойствами. Это явление называется коллоидной защитной, которая заключается в том, что при добавлении гидрофильных веществ к гидрофобным коллоидам они образуют структурно-прочные адсорбционные слои на поверхности частичек и повышают устойчивость последних по отношению к электролитам-коагулянтам.

Добавление к золю небольших количеств высокомолекулярных соединений (ВМС), которые не обеспечивают полного покрытия поверхности частичек золя, вызывает явление, противоположное коллоидной защите, — сенсибилизацию, т. е. повышение чувствительности золя к действию электролитов. Сенсибилизирующее действие ВМС проявляется независимо от знака заряда поверхности частичек золей. Термодинамическая устойчивость таких растворов определяется тем, что связь молекул полимерного соединения с водой сильнее их взаимной связи в твердой фазе и тем, что они равномерно распределены во всем объеме растворителя.

При очистке воды коагуляция коллоидов протекает под влиянием сложной смеси электролитов, находящихся в воде, и под влиянием ионов, вносимых в воду вместе с коагулянтом. Так, в случае применения Ai2(S04)3, в воду вносят значительные количества ионов S042-.

Если в качестве коагулянта используется FeCl3, в очищаемой воде повышается содержание ионов С1-. Наличие смеси электролитов усложняет коагуляцию, поскольку при этом эффекты влияния отдельных коагулирующих ионов усиливаются или ослабляются.

Коагуляция коллоидов вызывается не только электролитами, но и взаимодействием противоположно заряженных коллоидов, наступающим при адсорбции одного коллоида поверхностью другого. Этот процесс играет некоторую роль при осветлении воды коагулированием. Необходимым условием взаимной коагуляции является равенство противоположных зарядов частичек золей. При несоблюдении этого условия коагуляция протекает либо неполно, либо вовсе не наступает, независимо от количества прибавленного коагулирующего коллоида. Отсюда следует, что взаимная коагуляция коллоидов может протекать лишь в узкой зоне соотношения их концентраций.

Большинство коллоидов природных вод в отличие от золей коагулянтов заряжено отрицательно. К таким коллоидам относятся распространенные в природных водах кремниевая кислота, мельчайшие глинистые и почвенные частички, а также гумусовые вещества. Глинистые и почвенные взвеси состоят в основном из гидроалюмосиликатов.

Вода, входящая в состав глины, по современным представлениям не является кристаллогидратной. Молекула глины представляет собой молекулу алюмосиликатной кислоты, в которой кислород воды входит в состав аниона, а водород является катионом; простейшая формула гидроалюмосиликата в этом случае выглядит так.

Анионы алюмосиликата образуют основу отрицательно заряженной глинистой частички, окруженной сферой положительных компенсирующих ионов водорода. Величина заряда глинистой частички и его знак зависят от рН воды, в которой суспензирована глина, поскольку при повышении концентрации, ионов водорода уменьшается диссоциация алюмосиликатной кислоты, а благодаря этому и количество свободных ионов, обусловливающих устойчивость коллоидных частичек. Опыт подтверждает, что глинистые взвеси значительно скорее отстаиваются и коагулируют при подкислении воды.

Гумусовые вещества, также имеющие кислотный характера в природных водах встречаются в виде стойких высокодисперсных отрицательно заряженных золей. Основу частичек составляют анионы, гуминовых кислот; ионы водорода или металлов, составляют внешнюю оболочку двойного электрического слоя.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 209
Бесплатно скачать Реферат: Физико-химические основы коагулирования примесей воды