Реферат: Физиология человека
Гомеостаз представляет собой не статическое явление, а динамическое равновесие. Способность сохранять гомеостаз в условиях постоянного обмена веществ и значительных колебаний факторов внешней среды обеспечивается комплексом регуляторных функций организма. Эти регуляторные процессы поддержания динамического равновесия получили название гомеокинеза.
Степень сдвига показателей гомеостаза при существенных колебаниях условий внешней среды или при тяжелой работе у большинства людей очень невелика. Например, длительное изменение рН крови всего на 0.1 -0.2 может привести к смертельному исходу. Однако, в общей популяции имеются отдельные индивиды, обладающие способностью переносить гораздо большие сдвига показателей внутренней среды. У высококвалифицированных спортсменов-бегунов в результате большого поступления молочной кислоты из скелетных мышц в кровь во время бега на средние и длинные дистанции рН крови может снижаться до величин 7.0 и даже 6.9. Лишь несколько человек в мире оказались способными подняться на высоту порядка 8800 м над уровнем моря (на вершину Эвереста) без кислородного прибора, т. е. существовать и двигаться в условиях крайнего недостатка кислорода в воздухе и, соответственно, в тканях организма. Эта способность определяется врожденными особенностями человека — так называемой его генетической нормой реакции, которая даже для достаточно постоянных функциональных показателей организма имеет широкие индивидуальные различия.
0005 РЕГУЛЯЦИЯ ФУНКЦИЙ ОРГАНИЗМА
У простейших одноклеточных животных одна единственная клетка осуществляет разнообразные функции. Усложнение же деятельности организма в процессе эволюции привело к разделению функций различных клеток — их специализации. Для управления такими сложными многоклеточными системами уже было недостаточно древнего способа — переноса регулирующих жизнедеятельность веществ жидкими средами организма.
Регуляция различных функций у высокоорганизованных животных и человека осуществляется двумя путями: гуморальным (лат. Гумор - жидкость) - через кровь, лимфу и тканевую жидкость и нервным.
Возможности гуморальной регуляции функций ограничены тем, что она действует сравнительно медленно и не может обеспечить срочных ответов организма (быстрых движений, мгновенной реакции на экстренные раздражители). Кроме того, гуморальным путем происходит широкое вовлечение различных органов и тканей в реакцию (по принципу «Всем, всем, всем!»). В отличие от этого, с помощью нервной системы возможно быстрое и точное управление различными отделами целостного организма, доставка сообщений точному адресату. Оба эти механизма тесно связаны, однако ведущую роль в регуляции функций играет нервная система.
В регуляции функционального состояния органов и тканей принимают участие особые вещества—нейропептиды, выделяемые железой внутренней секреции гипофизом и нервными клетками спинного и головного мозга. В настоящее время известно около сотни подобных веществ, которые являются осколками белков и, не вызывая сами возбуждения клеток, могут заметно изменять их функциональное состояние. Они влияют на сон, процессы обучения и памяти, на мышечный тонус (в частности, на позную асимметрию), вызывают обездвижение или обширные судороги мышц, обладают обезболивающим и наркотическим эффектом. Оказалось, что концентрация нейропептидов в плазме крови у спортсменов может превышать средний уровень у нетренированных лиц в 6-8 раз, повышая эффективность соревновательной деятельности. В условиях чрезмерных тренировочных занятий происходит истощение нейропептидов и срыв адаптации спортсмена к физическим нагрузкам.
0003 Адаптация
Адаптация (от лат.-приспособление) в самом общем виде может быть определена как совокупность приспособительных реакций и морфологических изменений, позволяющих организму сохранить относительное постоянство внутренней среды в изменяющихся условиях внешней среды. У человека адаптация выступает как свойство организма, которое обеспечивается автоматизированными самонастраивающимися, саморегулирующимися системами - сердечно-сосудистой, дыхательной, выделительной и др. В каждой из этих систем можно выделить несколько уровней адаптации - от субклеточного до органного. Но конечный ее смысл не теряется ни на одном из уровней - это повышение жизнестойкости, устойчивости системы к факторам среды.
Адаптация - это эффективная и экономная, адекватная приспособительная деятельность организма к воздействию факторов внешней среды. В адаптации можно выделить две противоборствующие тенденции: с одной стороны, отчетливые изменения, затрагивающие в той или иной мере все системы организма, с другой - сохранение гомеостаза, перевод организма на новый уровень функционирования при непременном условии - поддержании динамическою равновесия.
Согласно представлениям П.К. Анохина, адаптацию следует рассматривать как формирование новой функциональной системы, в которой заложен приспособительный эффект. Сама функциональная система выступает как сложный физиологический механизм, сущностным содержанием которого является получение полезного приспособительного результата. Типичным примером адаптации с положительным результатом является приспособление к физическим нагрузкам.
Системная организация адаптивных реакций предполагает возможность их осуществления как на уровне физиологически зрелого организма, так и задолго до наступления физиологической зрелости. Концепция системогенеза П.К. Анохина дает объяснение этому: в ходе индивидуального развития в первую очередь формируются системы, обеспечивающие выживание ребенка после рождения. При оценке адаптивных возможностей детей и подростков к физической нагрузке необходимо выделять не столько абсолютные сдвиги в работе отдельных систем и органов, сколько показатели их согласованности, интегративной функции, обеспечивающей сам адаптационный эффект. Чем выше уровень интеграции, координированности сложных регуляторных процессов, тем эффективнее адаптация.
Совершенствование механизмов адаптации — это прежде всего улучшение процессов регуляции и соотношений физиологических функций. Адаптация целостного организма не исключает, а предполагает, что функциональные и структурные изменения происходят как на органном, так и на клеточном уровнях.
Адаптация на клеточном уровне сопряжена с активацией энергетических и пластических процессов. В первую очередь затрагиваются резервы аденозинтрифосфорной кислоты (АТФ). Отношение продуктов распада АТФ к оставшемуся ее количеству возрастает. Хорошо известны результаты увеличения продуктов энергообмена АТФ: они активируют окислительное фосфорилирование, т.е. запасание энергии в макроэргах (высокоэнергетических соединениях). Это, в свою очередь, приводит к интенсивному биосинтезу по цепочке: ДНК—РНК—белок. Увеличивается биомасса органа, активируется система передачи действия повреждающего агента на цитоплазму через встроенный в мембрану фермент аденилатциклазу. Молекула аденилатциклазы располагается в оболочке клетки таким образом, что часть ее выходит наружу, а часть — внутрь. Под воздействием сигнала извне аденилатциклаза активируется и катализирует образование циклической аденозин-монофосфорной кислоты (АМФ) из аденозинтрифосфорной кислоты. Концентрация циклической АМФ возрастает в 10 — 20 раз.
Основным механизмом клеточной адаптации является поддержание постоянства основного энергетического соединения- АТФ. Это постоянство обеспечивается усилением жиромобилизующего действия гормонов надпочечников, а также повышением эффективности окислительного цикла (цикл трикарбоновых кислот Кребса).
Природа потенциала покоя.
Между наружной поверхностью клетки и ее протоплазмой в состоянии покоя существует разность потенциалов порядка 60—90 мВ, причем поверхность клетки заряжена электроположительно по отношению к протоплазме. Эту разность потенциалов принято называть потенциалом покоя, или мембранным потенциалом. Точное измерение потенциала покоя возможно только с помощью микроэлектродов, предназначенных для внутриклеточного отведения.
Как только микроэлектрод прокалывает покрывающую клетку мембрану, так сразу луч осциллографа отклоняется вниз от своего исходного положения и устанавливается на новом уровне, обнаруживая тем самым существование скачка потенциала между поверхностью и содержимым клетки.
При удачном введении микроэлектрода мембрана плотно охватывает его кончик, и клетка сохраняет способность функционировать в течение нескольких часов, не обнаруживая признаков повреждения.
Наличие разности потенциалов между наружной поверхностью клетки и ее содержимым может быть обнаружено и без помощи микроэлектродов. Для этого достаточно нанести поперечный разрез на нерв или мышцу и приложить отводящие электроды таким образом, чтобы один из них касался места разреза, а второй - неповрежденной поверхности. В этом случае электроизмерительный прибор покажет, что между указанными участками ткани протекает ток (ток покоя), причем неповрежденный участок оказывается заряженным электроположительно по отношению к месту разреза. Однако такой способ отведения не позволяет измерять полную разность потенциалов между наружной поверхностью и внутренним содержимым клетки, так как жидкость, омывающая ткань с поверхности и находящаяся в межклеточных щелях, шунтирует (закорачивает) регистрирующую систему. Поэтому измеряемая разность потенциалов между поврежденным и неповрежденным участком ткани не превышает обычно 30—50 мВ. Для объяснения природы потенциала покоя были предложены различные теории. У истоков современного понимания этой проблемы стоит работа В. Ю. Чаговца, который в 1896 г., будучи студентом-медиком, высказал мысль об ионной природе биоэлектрических процессов и сделал попытку применить теорию электролитической диссоциации Аррениуса для объяснения происхождения этих потенциалов. В дальнейшем в 1902 г. Ю. Бернштейном была развита мембранно-ионная теория, которая модифицирована и экспериментально обоснована А. Ходжкином и А. Хаксли (1952) и в настоящее время пользуется широким признанием. Согласно этой теории, биоэлектрические потенциалы обусловлены неодинаковой концентрацией ионов К', N3', СГ внутри и вне клетки и различной проницаемостью для них поверхностной мембраны.
Протоплазма нервных и мышечных клеток содержит в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем внеклеточная жидкость.
Препятствием для быстрого выравнивания этой разности концентраций является тончайшая (около 100 А) плазматическая мембрана, покрывающая живые клетки.
Представления о структуре этой мембраны строятся на основании данных, полученных методами электронной микроскопии, оптической микроскопии, дифракции рентгеновых лучей и химического анализа. Предполагают, что мембрана состоит из двойного слоя молекул фосфолипидов, покрытого изнутри слоем белковых молекул, а снаружи слоем молекул сложных углеводов - мукополисахаридов.
В клеточной мембране имеются тончайшие канальцы - «поры» диаметром в несколько ангстрем. Через эти канальцы молекулы воды и других веществ, а также ионы, имеющие соответствующий размеру пор диаметр, входят в клетку и выходят из нее.
На структурных элементах мембраны фиксируются различные ионы, что придает стенкам ее пор тот или иной заряд и тем самым затрудняет или облегчает прохождение через них ионов. Так, предполагается, что наличие в мембране диссоциированных фосфатных и карбоксильных групп является причиной того, что мембрана нервных волокон значительно менее проницаема для анионов, чем для катионов. Проницаемость мембраны для различных катионов также неодинакова, и она закономерно изменяется при разных функциональных состояниях ткани. В покое мембрана нервных волокон примерно в 20-100 раз более проницаема для ионов К', чем для ионов N3', а при возбуждении натриевая проницаемость начинает значительно превышать калиевую проницаемость мембраны.
0007 Потенциал действия
Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя (например, толчка электрического тока), то в этом участке возникает возбуждение, одним из наиболее важных проявлений которого является быстрое колебание мембранного потенциала, называемое потенциалом действия.
Потенциал действия может быть зарегистрирован двояким способом: с помощью электродов, приложенных к внешней поверхности волокна (внеклеточное отведение), и с помощью микроэлектрода, введенного внутрь протоплазмы (внутриклеточное отведение).
При внеклеточном отведении можно обнаружить, что поверхность возбужденного участка волокна на очень короткий интервал, измеряемый тысячными долями секунды, становится заряженной электроотрицательно по отношению к соседнему покоящемуся участку.