Реферат: Физиология дыхания и спинного мозга человека
Как правило, после нескольких дыхательных движений легочная ткань становится равномерно прозрачной.
Регуляция дыхания осуществляется дыхательным центром, расположенным в ретикулярной формации ствола мозга в области дна IV желудочка. Дыхательный центр состоит из трех частей: медуллярной, которая начинает и поддерживает чередование вдоха и выдоха.
Апноэтической, которая вызывает длительный инспираторный спазм (расположена на уровне средней и нижней части моста мозга). Пневмотаксической, которая оказывает тормозящее влияние на апноэтическую часть (расположена на уровне верхней части моста мозга).
Регуляция дыхания осуществляется центральными и периферическими хеморецепторами, причем центральные хеморецепторы являются основными (в 80%) в регуляции дыхания. Центральные хеморецепторы более чувствительны к изменению рН, и их главная функция состоит в поддержании постоянства Н+ ионов в спинномозговой жидкости. СО2 свободно диффундирует через гематоэнцефалический барьер. Нарастание концентрации Н+ в спинномозговой жидкости стимулирует вентиляцию. Периферические хемо- и барорецепторы, особенно каротидные и аортальные, чувствительны к изменению содержания кислорода и углекислого газа. Они функционально активны к рождению ребенка.
В то же время пневмотаксическая часть дыхательного центра созревает лишь на протяжении первого года жизни, чем и объясняется выраженная аритмичность дыхания. Апноэ наиболее часты и длительны у недоношенных детей, причем, чем ниже масса тела, тем чаще и длительнее апноэ. Это свидетельствует о недостаточной зрелости пневмотаксической части дыхательного центра. Но еще большее значение в прогнозе выживаемости недоношенных детей имеет быстро нарастающее учащение дыхания в первые минуты жизни новорожденного. Это свидетельство недостаточности развития также апноэтической части дыхательного центра.
в) факторы регуляции кислородной ёмкости крови
Транспорт О2 осуществляется в физически растворенном и химически связанном виде. Физические процессы, т. е. растворение газа, не могут обеспечить запросы организма в О2 . Подсчитано, что физически растворенный О2 может поддерживать нормальное потребление О2 в организме (250 мл*мин-1 ), если минутный объем кровообращения составит примерно 83 л*мин-1 в покое. Наиболее оптимальным является механизм транспорта О2 в химически связанном виде.
Согласно закону Фика, газообмен О2 между альвеолярным воздухом и кровью происходит благодаря наличию концентрационного градиента О2 между этими средами. В альвеолах легких парциальное давление О2 составляет 13,3 кПа, или 100 мм рт.ст., а в притекающей к легким венозной крови парциальное напряжение О2 составляет примерно 5,3 кПа, или 40 мм рт.ст. Давление газов в воде или в тканях организма обозначают термином «напряжение газов» и обозначают символами Ро2 , Рсo2 . Градиент О2 на альвеолярно-капиллярной мембране, равный в среднем 60 мм рт.ст., является одним из важнейших, но не единственным, согласно закону Фика, факторов начальной стадии диффузии этого газа из альвеол в кровь.
Транспорт О2 начинается в капиллярах легких после его химического связывания с гемоглобином.
Гемоглобин (Нb) способен избирательно связывать О2 и образовывать оксигемоглобин (НbО2 ) в зоне высокой концентрации О2 в легких и освобождать молекулярный О2 в области пониженного содержания О2 в тканях. При этом свойства гемоглобина не изменяются и он может выполнять свою функцию на протяжении длительного времени.
Гемоглобин переносит О2 от легких к тканям. Эта функция зависит от двух свойств гемоглобина: 1) способности изменяться от восстановленной формы, которая называется дезоксигемоглобином, до окисленной (Нb + О2 НbО2 ) с высокой скоростью (полупериод 0,01 с и менее) при нормальном Рог в альвеолярном воздухе; 2) способности отдавать О2 в тканях (НbО2 Нb + О2 ) в зависимости от метаболических потребностей клеток организма.
Зависимость степени оксигенации гемоглобина от парциального давления Ог в альвеолярном воздухе графически представляется в виде кривой диссоциации оксигемоглобина, или сатурационной кривой (рис. 8.7). Плато кривой диссоциации характерно для насыщенной О2 (сатурированной) артериальной крови, а крутая нисходящая часть кривой — венозной, или десатурированной, крови в тканях.
На сродство кислорода к гемоглобину влияют различные метаболические факторы, что выражается в виде смещения кривой диссоциации влево или вправо. Сродство гемоглобина к кислороду регулируется важнейшими факторами метаболизма тканей: Ро2 pH, температурой и внутриклеточной концентрацией 2,3-дифосфоглицерата. Величина рН и содержание СО2 в любой части организма закономерно изменяют сродство гемоглобина к О2 : уменьшение рН крови вызывает сдвиг кривой диссоциации соответственно вправо (уменьшается сродство гемоглобина к О2 ), а увеличение рН крови — сдвиг кривой диссоциации влево (повышается сродство гемоглобина к О2 ). Например, рН в эритроцитах на 0,2 единицы ниже, чем в плазме крови. В тканях вследствие повышенного содержания СО2 рН также меньше, чем в плазме крови. Влияние рН на кривую диссоциации оксигемоглобина называется «эффектом Бора».
Рост температуры уменьшает сродство гемоглобина к О2 . В работающих мышцах увеличение температуры способствует освобождению О2 . Уменьшение температуры тканей или содержания 2,3-дифосфоглицерата вызывает сдвиг влево кривой диссоциации оксигемоглобина.
Метаболические факторы являются основными регуляторами связывания О2 с гемоглобином в капиллярах легких, когда уровень O2, рН и СО2 в крови повышает сродство гемоглобина к О2 по ходу легочных капилляров. В условиях тканей организма эти же факторы метаболизма понижают сродство гемоглобина к О2 и способствуют переходу оксигемоглобина в его восстановленную форму — дезоксигемоглобин. В результате О2 по концентрационному градиенту поступает из крови тканевых капилляров в ткани организма.
Оксид углерода (II) — СО, способен соединяться с атомом железа гемоглобина, изменяя его свойства и реакцию с О2 . Очень высокое сродство СО к Нb (в 200 раз выше, чем у О2 ) блокируют один или более атомов железа в молекуле гема, изменяя сродство Нb к О2 .
Под кислородной емкостью крови понимают количество Ог, которое связывается кровью до полного насыщения гемоглобина. При содержании гемоглобина в крови 8,7 ммоль*л-1 кислородная емкость крови составляет 0,19 мл О2 в 1 мл крови (температура 0o C и барометрическое давление 760 мм рт.ст., или 101,3 кПа). Величину кислородной емкости крови определяет количество гемоглобина, 1 г которого связывает 1,36—1,34 мл О2 . Кровь человека содержит около 700—800 г гемоглобина и может связать таким образом почти 1 л О2 . Физически растворенного в 1 мл плазмы крови О2 очень мало (около 0,003 мл), что не может обеспечить кислородный запрос тканей. Растворимость О2 в плазме крови равна 0,225 мл*л-1 *кПа-1 .
Обмен О2 между кровью капилляров и клетками тканей также осуществляется путем диффузии. Концентрационный градиент О2 между артериальной кровью (100 мм рт.ст., или 13,3 кПа) и тканями (около 40 мм рт.ст., или 5,3 кПа) равен в среднем 60 мм рт.ст. (8,0 кПа). Изменение градиента может быть обусловлено как содержанием О2 в артериальной крови, так и коэффициентом утилизации О2 , который составляет в среднем для организма 30— 40%. Коэффициентом утилизации кислорода называется количество О2 , отданного при прохождении крови через тканевые капилляры, отнесенное к кислородной емкости крови.
С другой стороны, известно, что при напряжении О2 в артериальной крови капилляров, равном 100 мм рт.ст. (13,3 кПа), на мембранах клеток, находящихся между капиллярами, эта величина не превышает 20 мм рт.ст. (2,7 кПа), а в митохондриях равна в среднем 0,5 мм рт.ст. (0,06 кПа).
г) изменения дыхания при физической работе и в условиях высокогорье
Дыхание при физической работе
При физической нагрузке потребление О2 и продукция СО2 возрастают в среднем в 15—20 раз. Одновременно усиливается вентиляция и ткани организма получают необходимое количество О2 , а из организма выводится CO2 .
Каждый человек имеет индивидуальные показатели внешнего дыхания. В норме частота дыхания варьирует от 16 до 25 в минуту, а дыхательный объем — от 2,5 до 0,5 л. При мышечной нагрузке разной мощности легочная вентиляция, как правило, пропорциональна интенсивности выполняемой работы и потреблению О2 тканями организма. У нетренированного человека при максимальной мышечной работе минутный объем дыхания не превышает 80 л*мин-1 ,а у тренированного может быть 120—150 л*мин-1 и выше. Кратковременное произвольное увеличение вентиляции может составлять 150—200 л*мин-1 .
В момент начала мышечной работы вентиляция быстро увеличивается, однако в начальный период работы не происходит каких-либо существенных изменений рН и газового состава артериальной и смешанной венозной крови. Следовательно, в возникновении гиперпноэ в начале физической работы не участвуют периферические и центральные хеморецепторы как важнейшие чувствительные структуры дыхательного центра, чувствительные к гипоксии и к понижению рН внеклеточной жидкости мозга.
Уровень вентиляции в первые секунды мышечной активности регулируется сигналами, которые поступают к дыхательному центру из гипоталамуса, мозжечка, лимбической системы и двигательной зоны коры большого мозга. Одновременно активность нейронов дыхательного центра усиливается раздражением проприоцепторов работающих мышц. Довольно быстро первоначальный резкий прирост вентиляции легких сменяется ее плавным подъемом до достаточно устойчивого состояния, или так называемого плато. В период «плато», или стабилизации вентиляции легких, происходит снижение Рао2 и повышение Расо2 крови, усиливается транспорт газов через аэрогематический барьер, начинают возбуждаться периферические и центральные хеморецепторы. В этот период к нейрогенным стимулам дыхательного центра присоединяются гуморальные воздействия, вызывающие дополнительный прирост вентиляции в процессе выполняемой работы. При тяжелой физической работе на уровень вентиляции будут влиять также повышение температуры тела, концентрация катехоламинов, артериальная гипоксия и индивидуально лимитирующие факторы биомеханики дыхания.
Состояние «плато» наступает в среднем через 30 с после начала работы или изменения интенсивности уже выполняемой работы. В соответствии с энергетической оптимизацией дыхательного цикла повышение вентиляции при физической нагрузке происходит за счет различного соотношения частоты и глубины дыхания. При очень высокой легочной вентиляции поглощение О2 дыхательными мышцами сильно возрастает. Это обстоятельство ограничивает возможность выполнять предельную физическую нагрузку. Окончание работы вызывает быстрое снижение вентиляции легких до некоторой величины, после которой происходит медленное восстановление дыхания до нормы.
Дыхание при подъеме на высоту
С увеличением высоты над уровнем моря падает барометрическое давление и парциальное давление О2 , однако насыщение альвеолярного воздуха водяными парами при температуре тела не изменяется. На высоте 20 000 м содержание О2 во вдыхаемом воздухе падает до нуля. Если жители равнин поднимаются в горы, гипоксия увеличивает у них вентиляцию легких, стимулируя артериальные хеморецепторы. Изменения дыхания при высотной гипоксии у разных людей различны. Возникающие во всех случаях реакции внешнего дыхания определяются рядом факторов: 1) скорость, с которой развивается гипоксия; 2) степень потребления О2 (покой или физическая нагрузка); 3) продолжительность гипоксического воздействия.
Первоначальная гипоксическая стимуляция дыхания, возникающая при подъеме на высоту, приводит к вымыванию из крови СО2 и развитию дыхательного алкалоза. Это в свою очередь вызывает увеличение рН внеклеточной жидкости мозга. Центральные хеморецепторы реагируют на подобный сдвиг рН в цереброспинальной жидкости мозга резким снижением своей активности, что затормаживает нейроны дыхательного центра настолько, что он становится нечувствительным к стимулам, исходящим от периферических хеморецепторов. Довольно быстро гиперпноэ сменяется непроизвольной гиповентиляцией, несмотря на сохраняющуюся гипоксемию. Подобное снижение функции дыхательного центра увеличивает степень гипоксического состояния организма, что чрезвычайно опасно, прежде всего для нейронов коры большого мозга.