Реферат: Формальная логика как наука о мышлении

В письменной и устной речи логика имеет большое значение. Беспорядочные мысли лектора или автора не воспринимаются слушателями и читателями, ибо они несвязны и неорганизованны, они не дают посыла слушателям и читателям самим «оседлать» логику лектора или автора и предвидеть результат рассуждений еще до того, как услышат его из уст лектора или увидят в конце текста. Письменная и устная речь всегда предполагает соучастника в лице читателя или слушателя, а это возможно только тогда, когда речь логически организована.

4. Основные формально-логические законы

4.1 Общие замечания

Хорошо известно, что логика как наука имеет длительную и богатую историю. В лице логики человечество вырабатывало науку о мышлении из поколения в поколение, и на этом пути оно достигло высоких результатов. Как и каждая зрелая наука, логика содержит в себе законы, т.е. те необходимые и существенные связи, которые повторяются в самых различных ситуациях как устойчивые зависимости, знание которых позволяет людям избегать ошибок в мышлении и практически действовать, опираясь на истину.

Существует бесчисленное множество законов логики, отражающих различные виды связи между суждениями и понятиями. К числу логических законов относятся, например, те необходимые условия, которым должны удовлетворять различные логические операции. Эти условия формулируются часто в виде правил. Таковы, например, правила определения, правила деления и т.п. Большое значение в логике имеют законы, выражающие зависимость истинности (или ложности) одних суждений от истинности (или ложности) других. Эти законы определяют логически правильные формы умозаключений. Примером логического закона может служить утверждение: «Если все М суть Р и все S суть М, то все S суть Р». Мы можем подставить любые конкретные по содержанию понятия вместо М, Р и S в указанное предложение, всякий раз все это предложение будет истинным. Подобные выражения в современной символической (математической) логике получают название тождественно-истинных.

Практически в ряде учебников по логике рассматриваются десятки законов (например, в учебнике В.А. Бочарова и В.И. Маркина «Основы логики». М., 1997, их упомянуто 32). Однако во многих учебниках среди множества логических законов принято выделять следующие четыре: закон тождества, закон противоречия, закон исключенного третьего и закон достаточного основания. Они считаются основными формально-логическими законами.

Выделение этих законов в качестве основных определяется тем, что в них формулируются наиболее общие и необходимые условия не только логической правильности каждой конкретной связи между суждениями и понятиями, но и самой возможности мышления как познавательной деятельности. Происхождение законов формальной логики связано с постоянным взаимодействием между человеком и природой, человеком и обществом, общением людей друг с другом в ходе их практической и научной деятельности. Эти законы, однако, не следует ни отождествлять с законами самой действительности, но и не рассматривать в полном отрыве от нее.

Рассмотрим вышеназванные законы более подробно.

4.2 Закон тождества

Этот закон раскрывает сущность требования об определенности и однозначности наших мыслей. Закон тождества можно сформулировать следующим образом: объем и содержание мысли о каком-либо предмете должны быть строго определены и оставаться постоянными в процессе рассуждения о нем.

Закон тождества принято выражать формулой А = А или А суть А.

В соответствии с законом тождества, рассуждая о чем-либо, мы должны уточнить объем и содержание используемых нами понятий и в процессе рассуждения и вывода строго придерживаться выбранных нами вначале ограничений (параметров), не подменяя в ходе рассуждения их другими. Выполнение этого требования гарантирует нам точность, определенность, недвусмысленность наших рассуждений; создает возможность различать и отождествлять предметы в формальных системах по выражающим их терминам. Сознательное ограничение объема и содержания мыслей о различных предметах позволяет на основе закона тождества производить абстракцию их отождествления. Иначе говоря, закон тождества сводится к принципиальной однозначности понятий, используемых нами на протяжении всего рассуждения и вывода.

Обратим внимание на то, что понятие о тождестве вещей, явлений, процессов, идей и т.д. есть идеализация, которая получается в результате отвлечения от несущественных на данный момент свойств и сторон предмета рассуждения. Для того, чтобы осуществить логическую операцию, мы должны привести суждение к одному из двух логических значений: либо истинно, либо ложно. Это производится при уточнении объема и содержания используемых понятий.

Закон тождества имеет силу только в мыслительном процессе; на материальные отношения предметного мира он не распространяется, т.е. не является абсолютным законом действительности. Поэтому говорить о его соблюдении означает настаивать на дисциплине нашего мышления, т.е. на обязательном характере правильного мышления, без чего невозможно получение истинного знания. Нарушение закона тождества ведет к логической ошибке, которую можно характеризовать как потерю или подмену предмета мысли. Она может возникнуть или непроизвольно, или умышленно. Первый случай (непроизвольно) может быть результатом низкой культуры ума, неумением правильно пользоваться имеющимися знаниями, отсутствием навыков системного мышления и т.д., а также неумения контролировать свои эмоции в ходе рассуждения или доказательства (дискуссии, спора и т.д.); второй случай (умышленное искажение предмета мысли в понятии) чаще всего задается идеологическими или узко практицистскими соображениями и адресуется малокультурной аудитории, что мы можем зафиксировать в ходе предвыборных кампаний. К сожалению, приход в политику новых людей не обязательно сопровождается повышением их логической культуры. К тому же, надо иметь в виду, что значение понятий, которые мы используем при доказательстве и выводах, определяется контекстом; внешне сходные понятия могут иметь различное содержание в зависимости от контекста. Например, понятие «демократ» может означать «сторонник либеральных идей», «борец за права человека» и т.д., а может и просто «член демократической партии». С точки зрения формальной логики понятие «демократ» следует считать неопределенным, и по этой причине оно подлежит уточнению, иначе закон тождества не будет соблюден. В ходе рассуждения мы обязаны придерживаться того значения этого понятия, которое мы ввели в самом начале.

Из приведенных рассуждений ясно, что соблюдение закона тождества во многом определяется нашим умением пользоваться понятиями. В ходе рассуждений (письменных или устных) возникает необходимость в целях стилистического разнообразия одни и те же понятия выражать различными словами, однако в этом случае надо следить, чтобы вновь вводимые слова как понятия были бы тождественными уже введенным понятиям, соразмерными с ними. Например: «В подтверждение выдвинутых положений диссертант привел убедительные аргументы. Его доводы были приняты аудиторией с одобрением». Здесь понятия «аргументы» и «доводы» совпадают, т.е. являются тождественными. В другом же примере на эту же тему: «В подтверждение выдвинутых положений диссертант привел убедительные аргументы. Его речь была встречена бурными аплодисментами» – мы сопоставляем понятия «аргументы» и «речь». Очевидно, они не являются тождественными, ибо «речь» включает в себя не только аргументы, но и стилистику, интонации, жесты, логику и пр., тогда как «аргументы» как понятия указывают на теоретическую и логическую стороны. Очевидно, здесь закон тождества не соблюдается, отчего описание события носит характер неопределенности, расплывчатости, недосказанности.

Еще пример: «Все течет; в одну и ту же реку нельзя войти дважды» (Гераклит). В одной из харьковских газет читаем заголовок: «Мудрец сказал: «В одну и ту же воду нельзя войти дважды»». Если сопоставить понятия «река» и «вода», то ясно, что они не тождественны, ибо вода может быть стоячей (в бассейне, в болоте, в пруду и т.д.), а река всегда в движении. Тот, кто поместил этот заголовок, нарушил закон тождества и тем самым исказил важнейшее положение Гераклитовского учения о диалектике, в котором раскрывается сущность движения. При внимательном чтении текстов вы сами можете найти примеры как положительного, так и отрицательного характера.

4.3 Закон противоречия

Условием истинного познания выступает также требование непротиворечивости мышления. Суть его раскрывается в формально-логическом законе противоречия, который можно сформулировать следующим образом: в процессе рассуждения о каком-либо определенном предмете нельзя одновременно утверждать и отрицать что-либо в одном и том же отношении, в противном случае оба суждения не могут быть вместе истинными. Закон противоречия принято выражать в виде формулы: (А Ù`А).

Где А и`А – два суждения (положительное и отрицательное), Ù - знак конъюнкции (читается как «и»), черта сверху означает отрицание всей формулы. Рассмотрим действие закона противоречия на следующем примере. Два суждения: «Иванов знает английский язык» и «Иванов не знает английского языка» не могут быть истинными, если относительно обоих суждений, во-первых, выполняется требование закона тождества (понятие «знать английский язык» определено); во-вторых, суждения относятся к одному и тому же времени и, в-третьих, утверждение и отрицание рассматриваются в одном и том же отношении (относятся к одному и тому же лицу). Противоречия не возникло бы, если бы речь шла о разных людях, но однофамильцах. То же можно сказать, если бы речь шла о разных временах: в одном случае Иванов – студент, в другом – он же, но уже доктор технических наук, 20 лет спустя. Существенным является то, что понимается под знанием английского языка; в одном случае это умение читать специальную литературу без словаря, в другом – способность работать в качестве переводчика. Мы видим, что здесь требуется выполнение закона тождества не только в отношении субъекта («Иванов»), но и предикатов в суждении («знает английский язык»).

Закон противоречия справедлив относительно любых видов противоположных суждений в обыденном и научном мышлении. Он играет важную роль в теории дедуктивного вывода и построении доказательства, поскольку выступает определяющим моментом в понимании и обосновании логической необходимости следования заключений из посылок. Следование заключения из посылок является логически необходимым лишь в том случае, когда при отрицании заключения мы не вступаем в противоречие с посылками умозаключения. (Эта ситуация будет рассмотрена в следующей лекции).

Закон противоречия играет важную роль в научной теории. Появление формально-логических противоречий в составе научной теории ставит под сомнение возможность ее обоснования и применения целиком всей этой теории на практике. В логике справедливо следующее правило: из логического противоречия (логически противоречивого выражения) следует любое суждение. Иначе говоря, если научная теория, использующая классическую дедуктивную логику, содержит логическое противоречие, то истинные и ложные положения выводимы в этой теории в равной мере. Использовать для практических целей такую теорию нецелесообразно. Подобные ситуации возникают нередко и в сфере нашей правовой теории, когда нормативные положения одних законодательных актов, будучи нечетко сформулированными, входят в противоречие с уже действующими законодательными актами, нормы которых следовало бы или скорректировать с учетом изменений, или отменить. Так как это не делается должным образом и вовремя, наше законодательство далеко не всегда является эффективным: оно создает возможность как превратного толкования законов, так и возможность их обхождения. Ясно, что в правовой науке и практике закон противоречия играет очень важную роль. Он выступает стимулом к усовершенствованию, а то и перестройке науки. Это можно проследить на примерах из области физики, математики и других наук.

В начале ХХ в. в физике возникла критическая ситуация, суть которой состояла в том, что квантовая механика (новое направление в физике) настаивала на двойственной природе микрочастицы, то есть электрон, например, рассматривался как частица и как волна одновременно, тогда как классическая механика Ньютона требовала рассматривать материальное тело как массу – основу природы. Масса (вещество) и волна (поле) казались противоположными субстанциями физической реальности. Нильс Бор, датский физик, ввел известный принцип, получивший название «принцип дополнительности», который «примирил» эти противоположности и стал общим принципов при изучении явлений микромира. Таким образом, стремление избежать противоречия «вещество-поле» привело к формулировке нового научного принципа.

Другой подобный пример из области математики. В конце Х!Х в. теория множеств Г. Кантора утвердилась как фундамент всего здания классической математики. Однако еще при жизни Г. Кантора и в последующее время в ней были обнаружены парадоксы, или антиномии. Под парадоксом логика понимает противоречие, полученное в результате внешне логически правильного рассуждения, приводящее к взаимно противоречащим заключениям. Наличие парадокса означает несостоятельность какой-либо из посылок (аксиом), хотя эту несостоятельность бывает трудно обнаружить, объяснить и тем более устранить. Еще в античном мире были обнаружены парадоксы, связанные с понятием истины. Наиболее интересным считается парадокс лжеца, приписываемый Эвбулиду. Его суть такова. Берется утверждение: «Высказывание, которое я сейчас произношу, ложно». Легко обнаружить, что это утверждение без противоречия нельзя считать ни истинным, ни ложным. Если предположить, что оно истинно, то мы придем к противоположному заключению, т.к. его ложность постулируется в самом утверждении. Если же допустить, что оно ложно, то мы придем к выводу, что оно должно быть истинным, поскольку мы действительно говорим, что признаем неправду. Возникает парадокс.

Среди множества парадоксов в связи с теорией множества Г. Кантора рассмотрим тот, который получил название парадокса Рассела-Цермело; он касается множества всех множеств, которые не содержат себя в качестве элемента. Сам Б. Рассел, английский логик, математик и философ, отмечал, что он пришел к открытию этого парадокса путем применения канторовского метода доказательства о несуществовании наибольшего кардинального числа к классу всех воображаемых объектов. Такой класс должен содержать себя в качестве члена. Но обычно класс не является собственным членом. Б. Рассел привел пример парикмахера, который бреет всех тех жителей деревни, которые не бреются сами. На вопрос, бреет ли он себя, нельзя дать никакого определенного ответа: ибо если он скажет «да», то он не войдет в класс тех, кто ходит к парикмахеру (они сами не бреются); если он скажет «нет», то он войдет в класс клиентов парикмахера, но сам им не окажется.

Этот и другие парадоксы теории множеств Г. Кантора поставили проблему пересмотра некоторых принципов математики и логики, ибо они были сформулированы на языке математики и логики и включали только такие термины, как множество или класс, кардинальные и ординальные числа и др. Ряд парадоксов был связан с использованием обычного языка, это так называемые семантические парадоксы(например, парадокс лжеца); их разрешение требует реконструкции существующего естественного языка, и прежде всего устранения из него двусмысленных и неопределенных выражений.

Парадоксы резко изменили отношение математиков к канторовской теории множеств. Среди них возникли различные направления и школы, каждая из которых по-своему стала решать вопросы обоснования математики и предлагала свои методы устранения парадоксов. Так математика обрела новые стимулы к развитию.

4.4 Закон исключенного третьего

Закон исключенного третьего следует рассматривать как дальнейшее уточнение требований непротиворечивости, последовательности и определенности, предъявляемых к мышлению. Он должен способствовать устранению из наших рассуждений неопределенных, двусмысленных выражений, употреблению определенных вопросов и ответов в дискуссиях и т.п.

Закон исключенного третьего имеет силу лишь при условии соблюдения требований ранее изложенных законов тождества и противоречия и может быть сформулирован следующим образом: в процессе рассуждения необходимо доводить дело до определенного утверждения или отрицания, в этом случае истинным оказывается одно из двух отрицающих друг друга суждений.

Смысл закона исключенного третьего выражает формула:

А Ú`А

Где А есть суждение, `А – его отрицание, Ú – знак дизъюнкции, читается как «либо».

Этим законом исключается истинность какого-либо третьего суждения, кроме того суждения, к которому мы пришли, или его отрицания. Здесь предлагается сделать выбор из двух противоречащих друг другу суждений. Одно из них должно быть непременно истинным. При этом закон не указывает, какое именно из суждений истинно, но указывает, что истина лежит лишь в пределах этих двух суждений, а не какого-то третьего. Закон исключенного третьего имеет силу относительно любых пар суждений, в которых одно утверждает то, что отрицается в другом. Например, из высказываний: (1) «Все планеты имеют спутников» и (2) «Неверно, что все планеты имеют спутников» (или то же самое «Некоторые планеты не имеют спутников») истинным является только одно, а именно (2). Никакого «третьего высказывания», которое также было бы истинным, между ними образовать нельзя.

Суждения (1) и (2) находятся в отношении противоположности друг к другу. Заметим особо, что закон исключенного третьего имеет обязательную силу лишь для определенного вида противоположности между высказыванием и его отрицанием, а именно для отношения контрадикторной противоположности. Наш пример как раз включает суждения такого вида.

К-во Просмотров: 168
Бесплатно скачать Реферат: Формальная логика как наука о мышлении