Реферат: Формування знань учнів з розділу "Оптика"
2) кут падіння променя світла дорівнює куту відбивання.
Отже, Ідеальна плоска поверхня - дзеркало - не змінює вигляду або, як кажуть, структури паралельного пучка світла - він лишається і після відбивання паралельним і змінює лише напрям свого поширення. Таке підбивання називається дзеркальним.
Металеві поверхні, лише шліфовані, але не поліровані, можуть мати окремі нерівності, розміри яких перевищують довжину хвилі. І тоді падаючий паралельний пучок після відбивання розсіюється (мал.4, б), хоч переважна частина енергії світла все-таки поширюється в напрямі дзеркального відбивання. Коли нерівності нагромаджені хаотично (матові поверхні), паралельний пучок повністю розсіюється і напрям поширення енергії не залежить від напряму падіння (дифузне відбивання світла). Цей вид відбивання світла має дуже важливе значення в житті людей і тварин, бо дає змогу бачити не лише світні тіла, а й несвітні, що опромінюються джерелами світла.
Бажано підкреслити, що закон відбивання світла однаковий для променів усіх довжин хвиль.
3.2 Відбивання гомоцентричних пучків світла від плоских і сферичних поверхонь. Дзеркала
Установивши закон відбивання для паралельного пучка променів, перейдемо до розгляду відбивання від плоскої дзеркальної поверхні розбіжного гомоцентричного пучка променів світла. Основне питання, яке треба при цьому розв'язати: "чи можна за допомогою плоского дзеркала утворити зображення точкового джерела світла?" Користуючись законом відбивання світла, показуємо, що плоске дзеркало не має дійсного зображення пікового джерела. Розбіжний гомоцентричний пучок променів лишається розбіжним. Кут розхилу також не змінюється. Змінюється лише напрям поширення пучка, що можна простежити на осьовому промені SCD. При ньому гомоцентричність падаючого пучка променів світла ця порушується. Новий уявний висхідний центр S' відбитого пучка променів лежить на продовженні перпендикуляра по другий бік від площини дзеркала на тій самій відстані від неї, що й джерело S.
Отже, за допомогою плоского дзеркала не можна утворити дійсне зображення точкового джерела, а отже, і світного тіла в цілому. Проте учні з досвіду знають, що дзеркало утворює уявне зображення. Як можна ввести поняття про уявне зображення? Тут є два способи. Перший спосіб - зауважити, що уявне зображення утворюється лише при спостереженні оком і про нього мова буде пізніше, а другий - ввести це поняття уже на даному етапі. Це можна зробити так. Насамперед розповідають учням, не вдаючись до розгляду будови ока (вона вивчається пізніше), що спостерігач бачить зображення світної точки в тому місці, де перетинається обернене продовження світлових променів, які входять в око. Це зображення буде дійсним, якщо в тому місці розташоване реальне джерело світла або його реальне зображення, створене попередньою оптичною системою, або уявним, якщо в тому місці ні джерела, його дійсного зображення немає. Після такого попереднього зауваження можна розглянути уявне зображення точки або предмета, що його дає плоске дзеркало.
Щоб утворити дійсне зображення при відбиванні світла, очевидно, треба скористатися криволінійними поверхнями. Найважливіші з них - сферичні: такі поверхні порівняно легко шліфувати й полірувати, і вони дають потрібний ефект.
Якщо на сферичне дзеркало малої кривизни спрямувати паралельно головній оптичній осі не дуже великого перерізу паралельний пучок променів світла, то вони (з достатнім наближенням) перетнуться в одній точці на осі. Цю точку називають головним фокусом дзеркала. Ввііши поняття фокуса і променів побудови, можна перейти до побудови зображень у сферичних дзеркалах. На закінчення варто розповісти про використання сферичних дзеркал у науці й техніці.
3.3 Заломлення гомоцентричних пучків світла на плоских поверхнях. Повне відбивання світла
Інша можливість, утворити зображення світної точки (або предмета) пов'язана з використанням закону заломлення світла. Щоб вивчити цей закон, розглянемо монохроматичний пучок паралельних променів світла, який падає на плоску межу поділу двох прозорих діелектриків, наприклад повітря і скла (мал.5). На відміну від відбивання, промені різної довжини хвилі заломлюються по-різному, тому надалі, якщо не буде якихось додаткових умов, користуватимемося монохроматичним світлом.
Простежимо за ходом заломлених променів. Закон заломлення світла, як і закон відбивання, також складається з двох частин:
1) падаючий і відбитий промені лежать в одній площині з перпендикуляром, проведеним у точці падіння;
2) відношення синуса кута падіння до синуса кута заломлення - величина стала для даних двох речовин, що межують, і є лише функцією довжини хвилі, а саме: . Стала n називається показником заломлення другою середовища відносно першого або просто відносним показником заломлення.
З хроматичності заломлення випливає обмеженість поняття променя. Ввівши поняття монохроматичного пучка променів, ми наближаємо променеву оптику до хвильової. Це доповнення дасть змогу і в хвильовій оптиці широко використовувати поняття променя.
З означення відносного показника заломлення випливає, що для кожної речовини він залежить від речовини, з якою вона межує. Щоб усунути цю неоднозначність, вводять поняття про абсолютний показник заломлення, коли межуючим середовищем є вакуум. Очевидно, для самого вакууму абсолютний показник заломлення дорівнює одиниці.
Пояснимо зв'язок між абсолютним і відно?