Реферат: Фотоэлектронная эмиссия. Эффективные фотокатоды
Закон Эйнштейна как показала экспериментальная проверка, строго выполняется для любых фотокатодов, в том числе и для сложных) Для металлов закон Эйнштейна впервые подтвердил на опыте Р.Милликен, и в свое время исследование было выполнено П.И.Лукирским и С.С. Прилежаевым, которые применили метод тормозящего поля между сферическими электродами, ранее разработанный П.И.Лукирским.
Пусть в системе двух концентрических сферических электродов эмиттером служит внутренняя сфера, рассмотрим электрон, вылетевший из точки А под прямым углом к радиусу ОА, и предположим сначала, что напряжение между электродами отсутствует. Электрон движется с постоянной скоростью, и по мере приближения к наружному электроду радиальная составляющая скорости растет, а составляющая, перпендикулярная к радиусу , уменьшается, и в точке прибытия В
(5)
Если между электродами приложено напряжение, то электрическое поле радиально и оно изменяет только компонента а остается такой же, как при отсутствии поля. Значит, в точке прибытия электрона энергия, связанная с составляющей , равна
, (6)
где К—полная энергия электрона. Формула дает часть полной энергии, которая не измеряется
в методе тормозящего поля между сферическими электродами. Если , то и, подавно, , и измеряемая часть энергии равна
, (7)
т.е. при можно с большой степенью точности измерять распределения полных энергий электронов. Неизменяемая часть энергии будет наибольшей для электронов, начальная скорость которых направлена по касательной к поверхности эмиттера. Для всех других электронов ошибка будет еще меньше. Формула (7) остается верной и для системы, в которой внутренняя сфера заменена несферическим катодом достаточно малого размера. рис. показаны результаты измерения вольт-амперной характеристик для меди при трех длинах волн. Из спектрально разложенного потока излучения выделяются монохроматический пучок лучей, который направляется на внутреннюю сферу. Ток (очень слабый) измеряется гальванометром. Форму измеренных вольт-амперных характеристик истолковать нетрудно. Горизонтальный участок - это ток насыщения, текущий в ускоряющем поле. На рис.4 масштаб выбран так, что ордината, изображающая ток насыщения для всех длин волн одинакова. В точке, где начинается понижение кривых, происходит переход от ускоряющего поля к тормозящему, и в этой точке напряжение батареи компенсирует контактную разность потенциалов и истинное напряжение
.
Для точек пересечения характеристик с осью абсцисс выполняется соотношение
зап Фэм
где Uзап - величина запирающего напряжения и Фэм - работа выхода эмиттера. Таким образом, на основании закона Эйнштейна задерживающий потенциал, при котором ток прекращается, линейно зависит от частоты , причем по углу наклона прямой можно определитьh (если е считать известным ). На рис.3 показаны прямые для Al и Cu,
Рис 3
причем для H получается 6, 61· эрг. сек, т.е. превосходное подтверждение закона Эйнштейна.
Рис 4. В ольт-амперная характеристика для Cu
Этот опыт доказывает также, что энергия фотона в металле может переходить к одному из свободных электронов. В этом состоит особенность фотоэлектрического поглощения света в металлах. Положение начало вольт-амперной характеристики, т.е. точка ее пересечения с осью абсцисс ---, не зависит от работы выхода металла-эмиттера. Если обозначить напряжение батареи, при котором через Uзб , то
зап )ист =uзб +uкн =Фэм,
uкн =(Фа -Фэм ),
то
uзб = Фа ),
т.е. при заданной частоте и одном и том же металле коллектора-анода вольт-амперные характеристики для различных металлических эмиттеров начинаются из одной и той же точки на оси абсцисс.
Вольт-амперная характеристика на участке тормозящего поля представляет собой интегральную кривую распределения электронов по энергиям. В самом деле, абсциссы этой кривой в некотором масштабе равны энергии электрона, а анодный ток, отложенный по оси ординат:
Ia =e,
где dNW -число электронов с энергиями в интервале от Wдо W+dW.Анодный ток Ia , таким образом, пропорционален числу электронов, энергии которых превращают величинуW1 =eUa . Кривая, выражающая связь между энергией W1 и числом частиц, имеющих энергию, превышающую W1 , называется интегральной кривой распределения, Чтобы получить обычную кривую распределения, нужно продифференцировать графически интегральную кривую распределения. Это сделано на рис.5
рис 5.
для интегральной кривой, измеренной при Как видно, максимальные энергии фотоэлектронов для металла, даже при освещении ультрафиолетовым светом, только немного превышают 1эв, а наиболее вероятная энергия (максимум кривой), грубо говоря, вдвое меньше.