Реферат: Фотоэлектронная эмиссия

1) Наиболее эффективно действует ультрафиолетовые лучи, поглащаемые телом.

2)Сила фототока пропорциональна создаваемой освещенности тела (разряжающее действие при прочих равных условиях пропорционально энергии активных лучей,падающих на разряжаемую поверхность.)

3)Под действием света освобождается отрицательные заряды.

Цинковая планстинка,соединеная с электродами и заряженн ая отрицательно, освещенная ультрафеолетовым светом, быстро разряжает электроскоп,таже пластинка, заряженная положительно сохраняет свой заряд, не смотря на освещение. При тщательном наблюдение электроновм большой чувствительности можно заметить,что незаряженная пластинка под действиаем освещения заряжается положително, т.е. теряет часть своих отрицательных зарядов, первоначально нетрализовавших ее положительный заряд . Несколько лет спустя (1898 г). Ленардом и Томсоном были произведены определения е м для освобождаемых электронов по отклонению их в электрическом и в магнитном полях. Эти измерения дали для е м значения 1,76 СГСМ , доказав что освобожденные светом отрицательные заряды суть электронами.


Фотоэлектронная эмиссия металлов

Фотоэлектрононой эмиссией или внешним фотоэлектрическим эфектом

называется испукания электронов поверхностью твердого тела под дейс-

вием падающего на нее электромагнитного излучения.

Основными законами фотоэффекта можно считать следующие

1) пропорциональность фототока интенсивности светового потока J,

вызывающего фотоэффект ( J ) при условии неизменности спректрального

состава излучения (Закон Столетова);

2) наличие длиноволновой (красной) границы области спектра излучения

вырывающего фотоэлектроны из даного фотокатода ; лишь излучения с длиной

волны т.е. с частотой C могут вырывать фотоэлектроны;

3) независимость кинетичесой энергии фотоэлектронов от интенсивности света и линейная зависимость максимальной кинетической энергии фотоэлектронов (), вырваного из даного фотокатода светом некоторой частоты ,от этой частоты :

4) безынерционность фотоэффекта. установлено, что фототок появляется и исчезает вместе с освещением, запаздывая не более чем

на

Качественное обьяснение с волновой точки зрения на первый взгляд не представляет трудности. В самом деле это объяснение могло бы выглядеть так ; падающая электромагнитная волна вызывает вынужденые колебания электронов в металле; при резонансе между собственым периодом колебания электронов и периода падающей волны амплитуда электрона становится настолько большой что он может вырваться за пределы поверхности металла.Очевидно , что если эта картина верна , то кинетическая энергия с какой электрон покидает метал , должна взаимствоваться у падающей волны , и поэтому естественно ожидать , что энергия фотоэлектрона должна находиться в прямой связи с интенсивности падающего света .Многочисленные опыты показали ,что энергия фотоэлектронов абсалютно не зависит от интенсивности света , повышение интенсивности увеличивает лишь число фотоэлектронов и при том в количестве строго пропорцианальном интенсивности -но не их скорости . Последнее зависит от частоты падающего света , а именно , с увеличением частоты линейно возрастает энергия фотоэлекторонов .Все эти законы фотоэффекта представляются непонятными с точки зрения волновой природы света . Независимость энергии фотоэлектронов от интенсивности света пытались объяснитьтем что свету приписывалось роль “спускавого механизма ” т.е. предполагалось , что электрон набирает свою энергию не за счет падающей волны, но за счет тепловых движений в металле, так что роль света сводится только к освобождению электрона.Однако при этом остается совершенно не понятным влияние частоты света и кроме того, если бы это было верно фотоэффект дожен был бы сильно зависеть от температуры металла, чего на самом деле нет.Обьяснение основных закономерностей фотоэффекта было дано на основе фотонной теории света ( Эйнштейна, 1905 г.). Фотон, обладающий энергией поглощается электроном фотокатода в единичном акте взаимодействия, повышая его энгергию на величину Если до поглощения фотона кинетическая энергия электрона была , где граница Ферми, а – положительная или отрицательная добавка, то после поглощения его энергия станет равной Если импульс такого электрона будет направлен к поверхности, то, потеряв по пути энергию , электрон може достигнуть поверхности металла и вылететь из катода.

После преодоления на поверхности металла потенциального порога электрон унесет с собой кинетическую энергию, равную

или учитывая, что

.

наибольщей кинетической энергией при даном ,очевидно, будут обладать те электроны ,для которых потери по пути равны нулюб т.е.

. (1)

Если пренебречь энергией теплового возбуждения электрона , то

(2)

К-во Просмотров: 568
Бесплатно скачать Реферат: Фотоэлектронная эмиссия