Реферат: Гальванотехника и ее применение в микроэлектронике

Электрохимическое оксидирование имеет две основные разновидности: получение барьерных тонких пленок (толщиной до мкм) и пористых толстых (до нескольких сотен мкм) анодных оксидных пленок.

Барьерные пленки получают в растворах электролитов типа H3 BO3 не растворяющих оксиды, обычно в два этапа. На первом этапе – в гальванических условиях; при этом напряжение увеличивается во времени, а толщина оксидной пленки пропорциональна количеству электричества. После достижения заданного напряжения режим изменяют на электростатический – ток снижается во времени, диэлектрические свойства оксидной пленки повышаются. Одна из наиболее важных областей применения барьерных оксидных пленок – получение диэлектрического слоя электролитических конденсаторов.

Пористые анодные оксидные пленки выращивают в агрессивных по отношению к оксиду электролитах, например, в 15%-ной H2 SO4 , при постоянном напряжении. Такие пленки состоят из двух слоев: тонкого барьерного и значительно более толстого пористого. Они широко применяются в качестве декоративно-защитных покрытий.

Нанесение на поверхность изделий металлических покрытий.

Нанесение на поверхность изделий тонких (до десятков мкм) металлических покрытий (гальваностегия) применяют для повышения коррозионной стойкости и износостойкости изделий, улучшения отражательной способности его поверхности, повышения электрической проводимости и магнитных характеристик, облегчения пайки, а также для декоративной отделки. Наиболее распространенные процессы – цинкование,


никелирование, меднение, хромирование, кадмирование, золочение, серебрение.

Меднение

Медные покрытия применяются в качестве подслоя при нанесении многослойных защитно-декоративных и многофунк-циональных покрытий на изделия из стали, цинковых и алюминиевых сплавов во многих отраслях промышленности; для улучшения пайки; для создания электропроводных слоев; для местной защиты стальных деталей при цементации, азотировании, борировании и других диффузионных процессах; в гальванопластике для наращивания толстых слоев при снятии металлических копий с художественных изделий.

Для меднения применяют как кислые так и щелочные электролиты.

В кислых электролитах медь находится в виде двухвалентных ионов. Используемые в промышленности кислые электролиты – сульфатные и фторборатные характеризуются высоким (95 – 100%) выходом по току и значительной скоростью осаждения. Недостаток кислых электролитов – получение из них покрытий с низкой рассеивающей способностью. Повышение рассеивающей способности достигается уменьшением в сульфатных электролитах концентрации CuSO4 и увеличением концентрации H2 SO4 . Такие электролиты, содержащие также органические добавки, применяют, например, для меднения печатных плат.

Щелочные электролиты дают возможность осаждать медь на сталь, цинковые и другие сплавы с менее электроположительным, чем у меди, стандартным потенциалом, т.к. образующиеся в растворах комплексные соли меди сдвигают ее потенциал к более отрицательных значением. Покрытия, осаждаемых из цианидных растворов, отличаются мелкозернистой структурой, они более равномерным слоем покрывают поверхность изделия.


Никелирование

Никелевые покрытия применяют в промышленности для защиты от коррозии изделий из стали и цветных металлов, для повышения износостойкости трущихся поверхностей. Никелевые

покрытия по отношению к железу являются катодными и могут служить защитными только при условии отсутствия в них пор. Поэтому сталь покрывают сначала слоем меди (25 –35 мкм), а затем никелем (10 – 15мкм). Наиболее широко применяют сульфатно-хлоридные электролиты. Из электролитов с добавками производных бутиндиола осаждаются мелкозернистые, эластичные, ровные блестящие покрытия. Основной недостаток покрытия малая коррозионная стойкость, обусловленная включениями серы. Избежать этого можно нанесением двух- или трехслойных покрытий.

Повышенной стойкостью отличаются композиционные никелевые покрытия, содержащие мелкодисперсные диэлектрические частицы – каолин, карбиды и др.

Оловянирование.

Оловянирование применяют для защитыизделий от коррозии в органических кислотах, содержащихся в пищевых продуктах. Покрытия улучшают электрическую проводимость и облегчают пайку контактов. Оловянирование производят в кислых (сульфатных, фтороборатных), а также щелочных (станнатных, пирофосфатных и др.) электролитах. Наиболее распространены сульфатные электролиты.

Серебрение.

Серебрение широко применяется в радиопромышленности, радиоэлектронике, производстве средств связи и ЭВМ для обеспечения высокой электрической проводимости контактов, покрытия внутренней поверхности волноводов, монтажной проволоки.


Для серебрения используют цианистые электролиты, отличающиеся хорошей рассеивающей способностью и высоким качеством осадков.

Оборудование для нанесения гальванических покрытий.

Для подготовки изделий к покрытию применяют в основном стационарные ванны.

Обезжиривают изделия в сварных прямоугольных ваннах, изготовленных из листовой стали. Ванны для обезжиривания в большинстве случаев снабжены подогревом и имеют специальные вентиляционные устройства. В ваннах предусмотрены специальные устройства «карманы» для удаления с поверхности раствора пены и масла.

Для травления меди и ее сплавов применяют керамиковые ванны, оборудованные вентиляционными устройствами.

Ванны для нанесения гальванических покрытий делают в основном из стали и в случае необходимости выкладывают внутри различными изоляционными материалами. Для кислых электролитов для внутренней обкладки применяется винипласт. Их используют для кислого цинкования, лужения, кадмирования, лужения, меднения, никелирования, осаждения сплава олово-свинец.

Для серебрения и золочения изготавливают фарфоровые, керамиковые или эмалированные ванны небольших размеров.

При интенсифицированном режиме большинство электролитов требуют подогрева, перемешивания и непрерывной фильтрации для чего ванны оборудуют соответствующими специальными устройствами: бортовым вентиляционным отсосом и электроподогревателями. Для перемешивания электролитов применяют сжатый воздух или механические мешалки, или движущиеся штанги. Для фильтрации применяют различные устройства периодического или непрерывного действия. При фильтрации электролит откачивается со дна ванны и пропускается через фильтр, затем снова попадает в ванну. Для


периодической фильтрации применяются передвижные фильтры, состоящие из насоса, фильтра, подающей и отводящей труб.

Для механизации процессов подготовки и наведения гальванических покрытий применяются полуавтоматические и автоматические ванны, также автоматизированные установки с программным обеспечением.

Все гальванические процессы протекают в основном под действием постоянного тока низкого напряжения. Для этого широко применяются выпрямители, создающие индивидуальное питание для каждой ванны (в соответствии с потребляемой силой тока).

Применение гальванотехники в микроэлектронике.

Удаление загрязнений с поверхности подложек.

Электрические характеристики интегральных микросхем (ИМС) и их надежность во многом обуславливаются степенью совершенства кристаллической решетки и чистотой обрабатываемой поверхности пластин и подложек. Поэтому обязательным условием получения бездефектных полупроводниковых и пленочных структур является отсутствие на поверхности пластин и подложек нарушенного слоя или каких-либо загрязнений.

В условиях производства ИМС пластины и подложки соприкасаются с различными средами, и полностью защитить их от адсорбции различного рода примесей невозможно. В тоже время получить идеально чистую поверхность (без посторонних примесей) тоже невозможно.

Для удаления загрязнений на поверхности и приповерхностном слое, в том числе тех, которые находятся в химической связи с материалом пластины или подложки, используют химические методы удаления. Они основаны на переводе путем химической реакции загрязнений в новые соединения, которые затем легко удаляются. Одним из таких методов является электрохимическое травление полупроводников.

Процесс травления пластин и подложек состоит в растворении их поверхности при взаимодействии с соответствующими химическими реагентами (щелочами, кислотами, их смесями и солями).

В соответствии с электрохимической теорией взаимодействие между полупроводником и травителем обусловлено тем, что на поверхности пластины при погружении ее в травитель существуют анодные и катодные микроучастки, между которыми возникают локальные токи. На анодных участках происходит окисление кремния с последующим растворением оксида и образованием кремний-фтористоводородной кислоты, на катодах – восстановление окислителя (азотной кислоты). В процессе травления микроаноды и микрокатоды непрерывно меняются местами. Результирующее уравнение реакции при этом имеет вид:

3Si + 4HNO3 + 18HF = 3H2 SiF6 + 4NO + 8H2 O

К-во Просмотров: 573
Бесплатно скачать Реферат: Гальванотехника и ее применение в микроэлектронике