Реферат: Гаметоциды и их применение в селекции

•пыльников линий пшеницы с ЦМС и нормальных растений установлено, что деградативные процессы в развивающихся пыльцевых зернах начинаются с несбалансированного поступ­ления питательных веществ в тапетум в результате наруше­ний функциональной активности васкулярной системы тычи­ночных нитей [31, 32, 87]. Последние у стерильных растений имели слабо дифференцированные васкулярные тяжи (либо они отсутствовали), в то время как у нормальных тычинок сосудистые элементы были хорошо дифференцированы на

9


ксилему и флоему. Наблюдаемое снижение аккумулирования крахмала в тканях тапетума и отсутствие запасного крахма­ла в зрелых микроспорах является следствием редукции пе­редвижения растворов (в частности углеводов) в тычинки стерильных растений [87]. Нарушение структуры васкулярных элементов при воздействии веществ с гаметоцидной активно­стью может быть одним из аспектов их действия, тем более, что обработка гаметоци.д'а'ми, как правило, сопровождается уменьшением размеров пыльников и длины тычиночных ни­тей [20, 59].

Преждевременное деградирование тапетума 'или. более длительное существование интактных клеток тапетума в пыльниках с мужской стерильностью, индуцированной хими­ческими препаратами, по-видимому, является результатом взаимосвязи химически активных веществ с деградативными энзимами (несвоевременная их индукция или блокирование) [56, 60, 74].

При исследовании причин абортивности пыльцы установ­лено повышение активности кислых фосфатаз в тканях нор­мальных пыльников до стадии тетрад, после которой актив­ность энзимтав резко снижалась с последующим дегенерирова-нием тапетума [56]. В тканях стерильных пыльников актив­ность энзимов была гораздо ниже, и набухший тапетум раз­давливал микроспоры [82].

.Подобный дисбаланс в энзиматической системе стериль­ных пыльников был отмечен S. Izhar и R. Frankel [82] при сравнительном изучении каллазной активности. В связи с тем, что период развития каллазной активности четко уста­новлен во времени и имеет определенный оптимум кислотно­сти (р.Н 5), авторы измерили invivopH различных стадий микроспорогенеза. У фертильных пыльников вплоть до позд­ней стадии тетрад р.Н составляла около 7, затем снижалась до 6, что сопровождалось растворением каллозы. В пыльни­ках растений линий с ЦМС pH обычно или низкая — тогда энзиматический распад каллозы материнской клетки пыльцы начинается раньше нормальных сроков, или высокая — тог­да наблюдается сильная активность энзима, начиная с про­фазы 1 в течение всего мейоза, вызывая цитологические на­рушения. Преждевременное повышение каллазной активности может быть причиной немедленного разрушения материнской клетки пыльцы. Торможение энэиматической активности кал-лазы блокирует распад каллозной оболочки материнских кле­ток пыльцы, в результате микроспоры теряют свои нормаль­ные очертания и деградируют.

Эти исследования позволили выявить новые причины абор­тивности пыльцы и показали, что в основе индукции мужской

10


стерильности лежит дисбаланс в четко скоординированные биохимических реакциях и нарушения в последовательности -„.нзиматических циклов. Изменение четкого ритма энзимати­ческой активности каллазы приводит к деградации развива­ющихся микроспор [2, 3, 4]. Экспериментально установлено, что период формирования тетрад является наиболее эффек­тивным для применения препаратов с гаметоцидной актив­ностью.

.Возможное участие гаметоцидов в процессах, обусловли­вающих торможение или .преждевременное освобождение микроспор из материнской клетки пыльцы, вероятно, связано с влиянием соединений с гаметоцндными свойствами на уров­ни энзиматической активности каллазы. Своевременная ин­дукция и развитие каллазной активности — критический пе­риод для нормального развития мужского гаметофита.

Для успешных поисков новых веществ, обладающих гаме­тоцидной активностью, необходимо располагать достаточной информацией о метаболизме спорогенной ткани и тапетума, а также о взаимосвязи вх обмена. Электронно-микроскопиче­ские наблюдения показали, что при нормальной метаболиче­ской взаимосвязи между клетками тапетума и развивающи­мися пыльцевыми зернами не наблюдается никаких аномалий [78]. Согласно имеющимся данным трудно определить, тапе­тум или спороциты являются 'инициатором -в нарушении взаимосвязи.

Одним из возможных путей выяснения механизма индук­ции мужской стерильности является исследование биохими­ческой активности тканей. При исследовании пыльников и экстр-актов листьев пшеницы установлено, что мужская сте' рильность пыльцы сопровождается репрессией активности терминальных оксидаз. Уровень активности цитохромоксида-зы в тканях фертильных растений по сравнению со стериль­ными гораздо выше [18, 27]. Подобное явление отмечено в тканях растений с генетической мужской стерильностью [46]. Цитохромоксидаза — неотъемлемый компонент мито-хондрий, поэтому низкую активность дыхательных энзимов растений с ЦМС можно объяснить дисбалансом митохондри-альных энзиматических систем [128].

Митохондрии, выделенные из стерильного материала (проростки пшеницы с ЦМС), характеризовались более вы­сокой окислительной фосфорилазной активностью, чем мито-хондрии из проростков с нормальной цитоплазмой [129]. Био­химические исследования и наблюдения электронной микро­скопии подтвердили, что мужская стерильность тесно связа­на с изменением функционального состояния этих структур клетки {15, 16, 63]. Восстановление фертильности в линиях

11


с ЦМ'С сопровождается одновременным устранением откло­нений в структуре цитоплазматических органелл и различных нарушений в метаболических процессах [27, 46]. Получены дополнительные доказательства в подтверждение гипотезы, что изменения в метаболизме митохондрий связаны с меха­низмами индукции мужской стерильности. Предполагается, что включение последних вызывает репрессию синтеза белков внутренней мембраны митохондрий [63, 114].

Однако было бы ошибочным считать, что только функцио­нальная активность митохондрий является основой возникно­вения цитоплазматической мужской стерильности. Ее индук­ция базируется на изменениях в широком диапазоне биохими­ческих реакций, обусловливающих нарушения в молекуляр­ных компонентах различных клеточных структур и цитоплаз­мы, что сопровождается появлением белков с анормальной эн-зиматической активностью. В результате этих изменений воз­никает дисбаланс в энзиматических системах или же полное их блокирование[8, 15, 20,82].

Для получения ЦМС путем химической индукции у сель­скохозяйственных культур необходимо детальное изучение метаболизма ДНК, РНОК и белка в стерильном и фертильном материале с цитологическим и цитохимическим сопоставлени­ем полученной информации. Изменения в содержании ДНК, РНК и белка в пыльниках кукурузы изучали методами цито­химии и микроденситометрии [101]. В процессе спорогенеза различали три пика интенсивного синтеза нуклеиновых кислот. Первый пик соответствует премейотическому периоду и ранней профазе, второй — приходится на интервал между поздним мейозом и стадией тетрад, третий (наименьший) — соответствует периоду, предшествующему митозу микроспор. В течение первого пика установлена самая высокая скорость роста спорогенной ткани и тапетума при активном синтезе молекулярных компонентов в обеих тканях. Во втором пике активный синтез ДНК, PlHiK и белка осуществляется в основ­ном в тканях тапетума. Торможение роста и параллельно син­теза этих молекулярных структур в спорах начинается в пе­риод третьего пика, при дегенерировании тапетума. В настоя­щее время тапетум рассматривают как возможный источник предшественников нуклеиновых кислот для формирующихся микроспор, которые получают материал для синтеза в форме растворимых предшественников или в форме ДНК с низким молекулярным весом [111, 130].

Основная аккумуляция PlHiK в спорогенной ткани проис­ходит в течение мейотической профазы, включая стадию па-хитены материнской клетки пыльцы. В тканях тапетума на­копление РНК приходится на тот же период (профаза—зи-12


готена—пахитена) [98]. Таким образом, сразу после синтеза ДНК на ранних этапах спорогенеза до митоза в микроспо-пах продуцируется РНК спорогенной ткани, причем 75% при­годится на рибосомальную РНК — на формы 16S и 28S. Ак­кумулирование форм p:PHiK 4S и 5S осуществляется иначе, чем основных форм pPlHK, и пик их аккумуляций наблюдает­ся в конце интерфазы микроспор [112].

В пыльцевом зерне основной синтез PHiK, ДНК и белка происходит на более поздней стадии — после митоза в мик­роспорах. .В цитоплазме пыльцевого зерна синтез всех форм РНК полиостью прекращается в последние 48 ч формирова­ния пыльцы [94]. Биосинтез нуклеиновых кислот и процессы, связанные с их обменом, претерпевают определенные измене­ния под влиянием соединений с гаметощидными свойствами.

Установлено, что у фертильных соцветий кукурузы интен­сивный синтез ДНК осуществляется на ранних этапах мик-роспорогенеза, но по мере завершения формирования пыль­цы наступает торможение синтетических процессов [20]. При обработке растений гаметоцидами (0,15%-ным раствором три-атаноламиновой соли ГМК или 0,8%-ным раствором натри­евой соли сф-дихлоризомасляной кислоты (FW-450), комби­нированно 0,8%-ным раствором FW-450 и 0,1%-ным раство­ром гнббереллина) содержание ДНК на всех этапах форми­рования пыльцы несколько увеличилось независимо от при­меняемого гаметоцида. Это объясняется торможением кле­точного растяжения под влиянием обработки гаметоцидами, в результате чего уменьшаются размеры клеток в спороген­ной ткани и пересчет на взятую навеску дает завышенное со­держание ДНК, не связанное с процессами аккумуляции нук­леиновых кислот [34].

Комбинированная обработка с гиббереллином (FW-450 + +гиббереллин) вызывает качественные изменения в молеку­лах ДНК, что приводит к нарушениям митозов и деградации ядра. Отмечено, что растворы ГМК и FW-450 по-разному влияют на интенсивность биосинтеза РНК в мужских репро­дуктивных органах кукурузы [26]. Параллельно было уста­новлено, что формы проявления стерильности (морфологиче-ские_йзменения) находились в зависимости от применяемого вещества. Применение ГМК на кукурузе вызывало торможе­ние образования РНК, и гаметоцид выступал здесь как ин­гибитор синтеза РН.К, обусловливая торможение клеточного удлинения. Морфологически это выражалось в уменьшении размеров соцветий, отсутствии в большинстве случаев колос­ков на латеральных веточках и в редукции листьев. Споро-генные ткани или совсем не формировали пыльцы, или она была нежизнеспособна. Действие FW-450 при данной концен-

13


трации'не вызывала значительных изменений в синтезе ДНК и PiHK, процессы спорогенеза у кукурузы протекали нормаль­но [20, 26].

У фертильных растений высокое содержание PiHIK отмече­но на более ранних этапах формирования пыльцы я дальней­ший синтез РНК осуществлялся более активно [94, 98, 137].

Специфичность действия гаметоцида обусловлена раз­личными факторам.и: близостью его химических характери­стик к аналогам синтетических пулов клетки; возможностью энэиматического преобразования в клеточной системе в суб­страт-подобный продукт ил;и в активный промежуточный ме­таболит определенных энздматических систем; наличием гор­мональных свойств или конформационного подобия с моле­кулами индукторов 'или репрессоров. Воздействие препаратов с гаметоцидными свойствами связано с физико-химическими характеристиками соединений (высокая электрофильность, способность к хелатированию и т. д.), в результате которых могут изменяться р1Н клетки и 'ионная сила в критические стадии развития спорогенной ткани [82].

Исследования влияния этрела на мейотические процессы в спорогенной ткани пыльников пшеницы TriticumaestivumL. показали, что индукция мужской стерильности связана с рас­падом этрела в растительных тканях с выделением этилена, молекулы которого обладают гормональными свойствами [47, 97]. Предполагают, что этилен, как и многие гормоны, влияет на функциональное состояние мембран, изменяя ак­тивность РНК полимеразы. Таким образом он может воздей­ствовать на процессы транскрипции, особенно участков ДНК, ответственных за синтез долгоживущих мРНК, транскриби­рующихся до мейоза, но необходимых для нормального тече­ния мейотических процессов[58, 98].

'В результате возможных нарушений в синтезе различных форм PlHiK при включении гаметоцида в метаболизм клетки неизбежно возникают анормальности в синтезе белка. В нор­мально развивающейся спорогенной ткани и в микроспорах активный синтез белка приходится на раннюю мейотическую профазу, его активность несколько снижается в зиготене — пахитене и совсем незначительна в период формирования тетрад [101]. Тапетум как ткань проявляет очень высокую ме­таболическую активность в течение всего периода микроспо-рогенеза вплоть до полного автолиза, поэтому отводить тапе-туму только секреторную роль — значит ограничить его мно­гообразные физиологические функции [108]. Отмечено, что пул ДНК тапетума недостаточен, чтобы служить источником для формирующихся микроспор [98]. Возможно, тапетум снаб­жает микроспоры растворимыми ДНК предшественниками,

14


как это было показано с экзогенно добавленным меченым ти-мидином, который быстро проникал в ткани тапетума и вклю­чался в ДНК микроспор [72]. Наиболее вероятно, что синтез РНК в тапетуме и микроспорах материнской клетки пыльцы независим. Однако это не исключает, что тапетум, особенно в ранний период формирования микроспор, частично постав­ляет предшественников РНК в спорогенную ткань [94]. В та­петуме имеется довольно большой рибосомальный пул, кото­рый, по-видимому, полностью деградирует вместе с ним или может поставлять предшественников РНК для последнего периода синтеза РНК в развивающихся спорах [101].

Роль тапетума в белковом синтезе может быть объяснена с точки зрения синтеза специфических энзимов, связаннь1х с мейозом или другими процессами в спорогенной ткани. До­пустимо участие тапетума и в распределении белкового ре­зерва. Высокая пропорция piPHK в его тканях свидетельст­вует о синтезе белков denovo, часть ,из которьгх откладыва­ется как запасные в микроспорак [28, 137]. Обработка гаме­тоцидными препаратами вызывает репрессию синтетических процессов белка в результате вмешательства этих физиоло­гически активных веществ во взаимосвязь процессов ДНК— РНК—белок [13, 19,29, 30, 104, 120]. Выяснение сущности про­цессов индукции мужской стерильности лежит в этой обла­сти. Эффект ГМК на ростовые процессы посредством дейст­вия ингибитора на обмен нуклеиновых кислот — эксперимен­тально установленный факт [29]. Значительное влияние ока­зывает ГМК на рибосомальную фракцию РНК путем изме­нений в процессах биосинтеза ДНК [19]. Возможно, что спе­цифичность действия ГМК проявляется на уровне репрессии синтеза биокаталитически активных белков именно той фрак­ции, которая ответственна за синтез и распад ДНК. При воз­действии ГМК наступает уменьшение фосфорелированных богатых лизином гистоновых фракций, количество которых в активноделящихся клетках при нормальных физиологических условиях значительно выше. Такое изменение в соотношении гистоновых фракций оказывает влияние на матричную актив­ность ДНК, что приводит к нарушению мейотического цикла. Не исключено, что изменение соотношения форм гистонов под влиянием ГМК создает условия для атаки и расщепления ДНК'азой доступных участков ДНК, о чем свидетельствует возросшая активность этого энзима у растений, обработан­ных ГМК [19].

ГМК как гаметоцид не проявляет высокой селективности действия, так как параллельно оказывает влияние на мери-стематическую ткань, где стимулирует процессы распада и ингибирует синтетическую активность клеток [29]. Очевидно,

15


'этим объясняются негативные эффекты, наблюдаемые при опрыскивании растений растворами ГМК: задержка в росте и развитии, морфологические аномалии и т. д. [20, 125].

Изменения в деятельности центров, программирующих природу синтезируемых белков и регулирующих их синтез, при включении механизмов стерильности вызывают сложные сдвиги в ферментативных системах. Низкая активность раз­личных энзиматшческих комплексов стерильных аналогов ози­мой пшеницы и угнетение активности окислительно-восстано­вительных процессов, лежащих в основе метаболизма, про­являются на ранних этапах формирования ,и развития микро­спор [6, 128]. Дезорганизация в энзиматических системах вы­зывает дисбаланс в аминокислотном, углеводном и нуклеино­вом пулах.

К-во Просмотров: 484
Бесплатно скачать Реферат: Гаметоциды и их применение в селекции