Реферат: Гамма функции
и на основании (2.2) имеем
(3.1)
В интеграле
Где k > -1,n > 0,достаточно положить
17
Интеграл
Где s > 0,разложить в ряд
=
где дзетта функция Римана
Рассмотрим неполные гамма функции (функции Прима)
связанные неравенством
Разлагая, в ряд имеем
18
Переходя к выводу формулы Стирлинга , дающей в частности приближенное значение n! при больших значениях n ,рассмотрим предварительно вспомогательную функцию
(3.2)
Непрерывна на интервале (-1,) монотонно возрастает от до при изменении от до и обращаются в 0 при u = 0.Так как
то при u > 0 и при u < 0 , далее имеем
И так производная непрерывна и положительна во всем интервале ,удовлетворяет условию
19
Из предыдущего следует, что существует обратная функция, определенная на интервале непрерывная и монотонно возрастающая в этом интервале,
Обращающаяся в 0 при v=0 и удовлетворяющая условие
(3.3)
Формулу Стирлинга выведем из равенства
полагая ,имеем
Положим далее введенная выше обратная функция, удовлетворяющая условиям u = -1при ,и при .Замечая что(см.3.2)
20
имеем
,
полагая на конец ,,получим
или
в пределе при т.е. при (см3.3)
откуда вытекает формула Стирлинга
которую можно взять в виде
21
(3.4)
где ,при
для достаточно больших полагают
(3.5)