Реферат: Геометрические характеристики поперечных сечений

Основы конструирования приборов

Реферат по теме

Геометрические характеристики поперечных сечений

Студента группы ИУ 3-32

Кондратова Николая


Статические моменты сечения

Возьмем некоторое поперечное се­чение бруса (рис. 1). Свяжем его с системой координат х, у и рас­смотрим два следующих интеграла:

Рис. 1


(1)

где индекс F у знака интеграла указывает на то, что интегрирование ведется по всей площади сечения. Каждый из интегралов представ­ляет собой сумму произведений, элементарных площадокdF на рас­стояние до соответствующей оси или у). Первый интеграл называется статическим моментом сечения относительно оси х, а второй — относительно оси у. Размерность статического момента см3 . При параллельном переносе осей величины статических моментов меняются. Рассмотрим две пары параллельных осей, x1 ,y1 и x2 , y2 .Пусть расстояние между осями x1 и x2 равно b, а между осями y2 и y2 равно а (рис. 2). Положим, что площадь сечения F и статические моменты относительно осей x1 и y1 , т. е. Sx1 , и Sy1 заданы. Требуется определить Sx2 и Sy2 .

Очевидно, х2 = x1 — а, y2 = y1 —b. Искомые статические мо­менты будут равны



???

Таким образом, при параллельном переносеосей статический момент меняется на величину, равную произведению площади F на расстояние между осями.

Рассмотрим более детально, например, первое из полученных выра­жений:


Величина b может быть любой: как положительной, так и отрицательной. Поэтому ее всегда можно подобрать (причем единственным образом) так, чтобы произведениеbF было равно Sx1 . Тогда статический момент Sx2 , относительно оси x2 обращается в нуль.

Ось, относительно которой статический момент равен нулю, называется центральной. Среди семейства параллельных осей она является единственной, и расстояние до этой оси от некоторой, про­извольно взятой, оси х1 равно

Рис. 2

Аналогично для другого семейства параллельных осей


Точка пересечения центральных осей называется центром тяже­сти сечения. Путем поворота осей можно показать, что статический момент относительно любой оси, проходящей через центр тяжести, равен нулю.

Нетрудно установить тождественность данного определения и обычного определения центра тяжести как точки приложения равно­действующих сил веса. Если уподобить рассмотренное сечение одно­родной пластинке, то сила веса пластинки во всех точках будет пропорциональна элементарной площади dF, а момент сил весаотносительно некоторой оси — пропорционален статическому мо­менту. Этот момент сил веса относительно оси, проходящей через центр тяжести, равен нулю. В нуль обращается, следовательно, и статический момент относительно центральной оси.

Моменты инерции сечения

В дополнение к статическим моментам рассмотрим еще три сле­дующих интеграла:


(2)

Через х и у обозначены текущие координаты эле­ментарной площадкиdF в произвольно взятой системе координат х, y . Первые два интеграла называются осевыми момен­тами инерции сечения относительно осей х и y соответственно. Третий интеграл называется центробежным моментом инерции сечения относительно осей х, у. Размерность моментов инерции см4 .

Осевые моменты инерции всегда положительны, поскольку поло­жительной считается площадь dF. Центробежный момент инерции может быть как положительным, так и отрицательным, в зависи­мости от расположения сечения относительно осей х, у.

Выведем формулы преобразования моментов инерции при парал­лельном переносе осей. Будем считать, что нам заданы моменты инерции и статические моменты относительно осей х1 и y1 . Требуется определить моменты инерции относительно осей x2 и y2


(3)

Подставляя сюда х 2 = x1 а и y2 =y1 b и раскрывая скобки (согласно (1) и (2)) находим


--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 239
Бесплатно скачать Реферат: Геометрические характеристики поперечных сечений