Реферат: Гидродинамика вязкой жидкости

(5)

Таким образом, при ламинарном течении скорость изменяется с расстоянием от оси трубы по параболическому закону.

2. Формула Пуазейля.

Метод Пуазейля. Этот метод основан на ламинарном течении жидкости в тонком капилляре. Рассмотрим капилляр радиусом R и длиной /. В жидкости мысленно выделим цилиндрический слой радиусом r и толщиной dr. Сила внутреннего трения , действующая на боковую поверхность этого слоя,

где dS — боковая поверхность цилиндрического слоя; знак минус означает, что при возрастании радиуса скорость уменьшается.

Для установившегося течения жидкости сила внутреннего трения, действующая на боковую поверхность цилиндра, уравновешивается силой давления, действующей на его основание:

После интегрирования, полагая, что у стенок имеет место прилипание жидкости, т. е. скорость на расстоянии R от оси равна нулю, получаем

Отсюда видно, что скорости частиц жидкости распределяются по параболическому закону, причем вершина параболы лежит на оси трубы. За время t из трубы вытечет жидкость, объем которой

откуда вязкость

3. Формула Стокса.

Формула Стокса. При малых Re, т. е. при небольших скоростях движения (и небольших /), сопротивление среды обусловлено практически только силами трения. Стокс установил, что сила сопротивления в этом случае пропорциональна коэффициенту динамической вязкости , скорости v движения тела относительно жидкости и характерному размеру тела I: (предполагается, что расстояние от тела до границ жидкости, например до стенок сосуда, значительно больше размеров тела). Коэффициент пропорциональности зависит от формы тела. Для шара, если в качестве / взять радиус шара r, коэффициент пропорциональности оказывается равным 6я. Следовательно, сила сопротивления движению шарика в жидкостях при небольших скоростях в соответствии с формулой Стокса равна

(1)

Метод Стокса. Этот метод определения вязкости основан на измерении скорости медленно движущихся в жидкости небольших тел сферической формы.

На шарик, падающий в жидкости вертикально вниз, действуют три силы: сила тяжести (р — плотность шарика), сила Архимеда (р' — плотность жидкости) и сила сопротивления, эмпирически установленная Дж. Стоксом: , где r — радиус шарика, v — его скорость. При равномерном движении шарика

или

Откуда

Измерив скорость равномерного движения шарика, можно определить вязкость жидкости (газа).

4. Закон подобия.

Геометрическое, кинематическое, динамическое подобие.

Этап изучения зависимости интересующей величины от системы выбранных определяющих факторов может выполняться двумя путями: аналитическим и экспериментальным. Первый путь применим лишь для ограниченного числа задач и при том обычно лишь для упрощенных моделей явлений.

Другой путь, экспериментальный, в принципе может учесть многие факторы, но он требует научно обоснованной постановки опытов, планирования эксперимента, ограничения его объема необходимым минимумом и систематизации результатов опытов. При этом должно быть обосновано моделирование явлений.

Эти задачи позволяет решать так называемая теория подобия, т. е. подобия потоков несжимаемой жидкости.

Гидродинамическое подобие складывается из трех составляющих: геометрического подобия, кинематического и динамического.

Геометрическое подобие как известно из геометрии, представляет собой пропорциональность сходственных размеров и равенство соответствующих углов. Под геометрическим подобием понимают подобие тех поверхностей, которые ограничивают потоки, т. е. подобие русел (или каналов).

Отношение двух сходственных размеров подобных русел назовем линейным масштабом и обозначим эту величину через .Эта величина одинакова для подобных русел I и II.

Кинематическое подобие означает пропорциональность местных скоростей в сходственных точках и равенство углов, характеризующих направление этих скоростей:

К-во Просмотров: 537
Бесплатно скачать Реферат: Гидродинамика вязкой жидкости