Реферат: Гидротермальные изменения

Введение

Гидротермы по-разному влияют на породы, проходя через них: в процессе гидротермальных изменений существующие минералы могут быть удалены, или замещены другими минералами, или в трещинах и порах пород могут отложиться новые минералы. Все эти процессы могут происходить совместно. Новые минералы, которые образовались или путём отложения в полостях, или в результате замещения, называются вторичными минералами. В этой главе рассмотрены вторичные минералы, образованные в результате гидротермальных изменений других минералов. Отложение минералов обсуждается в другой главе, поскольку их минералогия похожая, но структуры совершенно разные.

Гидротермальные изменения сопоставимы с диагенезом, при котором первичные минералы замещаются диагенетическими фазами по мере погребения в толщах пород и последующего увеличения температуры и давления. Поскольку температуры могут быть одинаковыми в обоих структурных условиях, в связи с этим, возможно, образование одинаковых минералов. Это может вызвать трудности в диагностике различий гидротермальных изменений и диагенеза в метаморфизованных породах.

Природа вторичных минералов и скорость их образования контролируются такими факторами, как температура, состав гидротерм и отношение вода/порода. Последний фактор зависит от проницаемости пород, скорости течения гидротерм и продолжительности процесса. Гидротермальные изменения наиболее интенсивны в проницаемых породах, где скорость течения гидротерм большая, и системы долгоживущие. Гидротермальные изменения могут быть описаны с точки зрения их интенсивности, степени изменений и распространенности.


1. Интенсивность гидротермальных изменений

Интенсивность гидротермальных изменений является индикатором объёма пород, изменённых в результате прохождения через них гидротермальных растворов. Интенсивность гидротермальных изменений можно определить довольно точно по доле вторичных минералов относительно оставшейся доли первичных минералов или же по сохранившейся первичной структуре. Интенсивность будет различной для разных литологических типов пород в соответствии с проницаемостью пород и реакционной способностью первичных компонентов. Таким образом, высоко проницаемые известняки или витрофировые туфы будут чрезвычайно чувствительными к гидротермальным изменениям, тогда как кварцевый песчаник очень медленно подвергается воздействию гидротермальных растворов. Обычная последовательность минералов, от более реактивно способных к менее подверженным воздействию гидротерм, следующая: карбонаты, вулканическое стекло, мафические минералы, плагиоклаз, К-полевой шпат, апатит, кварц, циркон.

Имеются исключения. Так, например, в некоторых породах полевой шпат будет изменённым, в то время как мафические минералы сохранятся, и это означает, что чувствительность обычных минералов к гидротермальным изменениям зависит от наличия гидротерм.

Интенсивность гидротермальных изменений может определяться процентными содержаниями, или могут применяться описательные категории. Наш подход представлен описанием гидротермальных изменений, как «слабые», где вторичные минералы составляют до 25% объёма пород, «умеренные», где они составляют 25-75% и «сильные», если общее содержание вторичных минералов более 75%. Породы, в которых отсутствуют вторичные минералы, являются неизменёнными. В породах с остатками небольшого количества первичных минералов гидротермальные изменения являются интенсивными, если первичные текстуры не наблюдаются.


2. Степень гидротермальных изменений

Степень гидротермальных изменений является индикатором условий, ответственных за формирование в породах вторичных минералов. Таким образом, породы, которые содержат вторичные минералы, образовавшиеся при низкой температуре, описываются в качестве низкой степени гидротермальных изменений, тогда как минералы, образованные в высокотемпературных условиях, характеризуют высокую степень гидротермальных изменений, а минералы, образованные при промежуточных температурах, характеризуют промежуточную степень изменений.

Интенсивность и степень гидротермальных изменений, обусловленные действием гидротермальных растворов, контролируются двумя конфликтными факторами. С одной стороны, большинство химических реакций протекают быстрее при высоких температурах и гидротермы более мобильны. Таким образом, быстрые гидротермальные изменения ожидаемы на больших глубинах. Наоборот, гидротермы при около магматических температурах, в основном магматического происхождения, могут находиться ближе к равновесию с изверженными породами. Кроме того, соединения такие, как HCl, значительно меньше диссоциированы при высоких температурах, что означает меньшую эффективную кислотность, чем она могла бы ожидаться при молярной концентрации HCl.


Эти эффекты определены количественно для реакций угольной кислоты с риолитами. Авторы определили, что степень реактивоспособности самая наибольшая при 150-200°С. Скорость распространения гидротермальных изменений при 200°С была в 27 раз выше, чем при 350°С. При более низких температурах скорость реакции очень мала, чтобы быть эффективной.

Следовательно, имеется ограничительный потенциал для гидротермальных изменений интрузий, которые образуют источник тепла для гидротермальной системы, или изверженных вмещающих пород. Около интрузивные гидротермальные изменения ограничиваются определёнными объемами, количеством гидратации, калия и кремневого метасоматизма, формирующими КПШ и биотит.. По мере остывания гидротерм и разбавления подземными водами происходит их преобразование через реакции, они всё более и более приходят в равновесие с вмещающими породами. Таким образом, по мере того, как скорость реакции замедляется, она может иметь большее влияние на минералогический состав пород. Обычно процесс состоит в удалении ферромагнезиальных катионов и в замещении их щелочами, наряду с привносом кремния, гидратации и в переменных масштабах карбонатизации и сульфидизации. По мере того как температура понижается, отношение Na/K в гидротермах поднимается и, соответственно, падает в породах. Этот процесс приводит к образованию систематической зональности гидротермальных изменений, которые мы наблюдаем в гидротермальных системах.


3. Распространенность гидротермальных изменений

Гидротермальные изменения не могут быть однородными по интенсивности в образцах пород, буровых кернах или в обнажениях. Действительно, они могут быть частями того, что интенсивно изменено, и частями того, где гидротермальные изменения слабые или умеренные, или где присутствуют различные комплексы гидротермальных минералов. В крайних случаях гидротермальные изменения могут ограничиваться жилами, мощностью несколькими миллиметрами, формируя видимые ореолы вокруг них. Вариации интенсивности гидротермальных изменений известны как «повсеместная распространённость )), где они простираются на многие метры или километры, и локализованные, где гидротермальные изменения локализуются в масштабах миллиметров-сантиметров. В обоих случаях гидротермальные изменения могут быть любой интенсивности или степени изменённости. Если гидротермальные изменения локализованы, то они могут лишь размещаться вблизи зон проницаемости, или иметь более нерегулярное распределение.


4. Минеральные комплексы гидротермальных изменений

При исследовании вторичных минералов, установлено, что определенные минералы часто встречаются вместе, формируя различные минеральные комплексы. Большинство комплексов находятся в термодинамическом равновесии, образуя равновесные комплексы. Также могут встречаться неравновесные комплексы. Они содержат минералы, которые не должны находиться вместе, согласно химическим или термодинамическим условиям и, в частности, обычно они образуются там, где происходило быстрое отложение минералов. Эти комплексы минералов обычно образуются из агрессивных кислых растворов. Многие реакции, которые продуцируют равновесные комплексы минералов, могут происходит медленно и первичные минералы оставаться в метастабильном состоянии, таким образом, происходит формирование неравновесного комплекса. В результате этого минералы двух или более различных комплексов гидротермальных минералов могут сохраниться в породе.

Хотя степень гидротермальных изменений является полезной характеристикой, в практике исследований более обычным является ссылка на специфику комплексов вторичных минералов. Некоторые комплексы вторичных минералов были хорошо изучены, хотя ряд исследователей редко используют эти различия в их диагностике. Иные исследователи избегают всяких ссылок на комплексы вторичных минералов и фактически используют лишь отдельные минералы из всех вторичных минералов, присутствующих в изменённых породах. Концепция образования комплексов гидротермальных минералов является полезной, при условии, что произведено тщательное определение каждого минерального комплекса. Это особенно важно использовать при быстром описании групп пород или при сравнении гидротермальных изменений в различных рудопроявлениях, поскольку условия формирования информативных комплексов вторичных минералов должны быть аналогичными везде. Однако, как и во всякой классификационной схеме, перед тем как произвести определение минералов ценным является первое описание пород, текстур и минералов.

Аргиллит - глинистые комплексы вторичных минералов с преобладанием низкотемпературных глин, таких как каолинит, смектит и смешанослойный иллит-смектит. Они образуются при низкой температуре, в кислых до нейтральных слабо минерализованных гидротермах.

Филлит - преимущественно сложены иллитом, серицитом и кварцем. Наряду с ними присутствуют пирит и возможно ангидрит. Может также содержаться в малых количествах хлорит, кальцит, титанит и рутил. Филлит образуется при умеренных температурах, в кислых до нейтральных с разной минерализацией гидротермах. Обычно располагается в проницаемых зонах и вблизи жил. Требуется дополнительный привнос H2O, Si, K и вынос из пород Na,Ca,Mg.

Пропилит - характеризуется присутствием хлорита с некоторым количеством иллит/серицита, эпидота, кварца, альбита, кальцита и ангидрита. Пропилит образуется при умеренных температурах, в нейтральных гидротермах с различной минерализацией, обычно в местах с низкой проницаемостью. Характеризуется слабым массопереносом, за исключением притока летучих компонентов: H2O, CO2 и серы.

Высокотемпературный пропилит - содержит вторичный актинолит и/или гранат в дополнении к выше приведенному комплексу вторичных минералов, характерному для пропилита. Высоко температурный пропилит образуется в аналогичных условиях, что и пропилитовый комплекс вторичных минералов.

Калиевые изменения - главными вторичными минералами являются биотит, ортоклаз, кварц и магнетит. Обычно ангидрит акцессорный минерал, могут присутствовать в небольших количествах альбит и титанит или рутил. Калиевые изменения образуются в около интрузивных высокотемпературных гидротермах. В таких случаях можно представить породу, как комплекс вторичных минералов и, возможно, уместно ссылаться на гидротермальные изменения, такие как: окремнение или карбонат - адуляр - цеолитовые, сульфидные - или сульфатные. Здесь могут быть обширные наложения на некоторые из этих комплексов вторичных минералов. Особенно между филлитами и пропилитами и филлитами и аргиллитами. В действительности этот факт является полезным при характеристике крайних членов гидротермальных изменений, между которыми можно провести градации. Некоторые исследователи пытались определить дополнительные комплексы вторичных минералов, которые являются переходными или смешанными типами тех гидротермальных комплексов, которые описаны выше. Так, например, поскольку наложение между филлитами и пропилитами и в меньшей степени распространено на аргиллитовые комплексы минералов, то существуют их комбинации в единой категории. Однако пропилитовые комплексы отличаются от двух других в долях масс переноса, а не какого-либо различия в температурах или химического состава гидротерм. Пропилитовый комплекс является в действительности промежуточной ступенью во время формирования филлитового минерального комплекса и поэтому такое наложение может предполагаться. Мы считаем, что имеется польза от определения отдельных комплексов вторичных минералов и там, где фиксируется наложение, стоит исследовать природу и доли вторичных минералов, а не просто относить пробы к единому комплексу.

Некоторые из выше приведенных понятий использовались не корректно. Так, например, термин «калиевые» ошибочно применялся к филлитам или даже аргиллитизированным породам. Хотя эти породы могли иметь повышенные содержания калия, но они совершенно отличаются от калиевых гидротермальных изменений в том трактовании, как приводится в этой работе, так как в этих породах присутствует биотит, а не иллит или иллит-смектит, ортоклаз и адуляр.


5 Наложение

Наложение является частичным или полным замещением одного комплекса вторичных минералов другим комплексом и должно происходить в результате изменений физических и/или химических условий. В стабильной гидротермальной системе, при условии хорошей проницаемости и реакции между гидротермами и породами, в конечном счёте, образуются комплексы вторичных минералов, которые находятся в равновесии, как внутри комплексов, так и с гидротермами, в условиях преобладающих в настоящее время. Однако гидротермальные системы редко бывают стабильными длительное время и, когда условия изменяются, то новые серии реакций создают новые равновесные комплексы вторичных минералов. Обычно такие изменения влияют на температуру, рН или химический состав гидротерм или, возможно, все три фактора могут быть связаны с рудной минерализацией.

Наложение может быть прогрессивным; ретроградным; или ни то ни другое. Если реакции наложения достаточно завершённые, то предыдущие комплексы вторичных минералов могут отсутствовать. Однако обычно некоторые минералы сохраняются, поскольку они устойчивые к гидротермальным изменениям или они заключены в устойчивых минералах, в то время как другие минералы могут диагностироваться по кристаллическим псевдоморфозам. По данным, предшествующим генерации жил, или по флюидным включениям можно также понять, что наложение происходило. Так, например, может быть две популяции флюидных включений.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 273
Бесплатно скачать Реферат: Гидротермальные изменения