Реферат: Глобальная история Вселенной (физика)

1D2+1D2 Þ 1T3 + 1p1 + 2e+

3Li6+0n1 Þ 2He4 + 1T3 + 2e+

3Li6+1D2 Þ 2Li7 + 1р1 + 2e+

Суммарный результат этих реакций можно выразить уравнением:

41H1 Þ 2He4 + 2e+ .

На самом деле происходит такая реакция:

41H1 Þ 2He4 + 2e+ + 2n.

Рис. 4

Нейтрино, выделившиеся при реакции, мгновенно поглотится ближайшей молекулой водорода. Позитроны аннигилируют с двумя протонами, результатом чего является появление двух нейтрино и двух антинейтрино. Нейтрино снова станут частью ядра одной из молекул водорода. При горении двух молекул водорода расходуется два нейтрино (имеется в виду идеальный атом), а результатом такой реакции является появление четырех нейтрино. То есть первая реакция влечет за собой цепную реакцию.

Антинейтрино тоже участвует в термоядерных реакциях. Антинейтрино соединяются с оставшимся после распада легким нейтроном, превратив его в антипротон, который станет участником новых термоядерных реакций. То есть любая термоядерная реакция вызовет цепную реакцию и появление новых реакций. А топливом для каждой реакции является нейтрино. Именно нейтрино превращает кинетическую энергию гравитации в потенциальную энергию тяжелого ядра. Потенциальная энергия тяжелого ядра превращается в кинетическую, высвобождая частицы при термоядерных реакциях.

Ядра дейтерия и трития легко подвергаются распаду из-за разности энергий позитронов составляющих ядро, две и три, соответственно, положительно заряженные частицы не могут долго находиться вместе, их удерживает лишь гравитация. Совсем другое дело – «стабильные» ядра гелия или лития (имеются в виду легкие ядра). Само по себе ядро гелия не может распасться в отличие от ядра дейтерия или трития, то есть нейтроны в ядре служат изоляционными прокладками, препятствующими распаду ядра. Стабильное ядро может распасться, лишь получив дополнительную массу в виде нейтрино или антинейтрино. То есть все реакции горения водорода сопровождаются поглощением ядра дополнительной массы – свободных нейтрино. В идеале для осуществления неуправляемой термоядерной реакции горения водорода необходимо всего два нейтрино, но на самом деле реакция горения водорода происходит вместе с другими сопутствующими реакциями (образование тяжелых нейтронов, дейтерия, трития), и для осуществления неуправляемой реакции необходимо несколько десятков нейтрино или антинейтрино.

Итак, с реакцией горения водорода мы разобрались, но мы так до сих пор и не поняли, какой же на самом деле частицей является нейтрон? Что это за частица? Какие вопросы она поднимает? Из чего на самом деле она состоит? Нейтрон – это частица абсолютно нейтральная по массе электромагнитному заряду и знаку. Можно получить частицу нейтральную по массе и знаку (фотон), но как получить частицу, не обладающую никаким зарядом? То есть должна существовать такая частица, как антифон, обладающая зарядом, противоположным фотонному. То есть соединение фотонов и антифотонов, должно составлять нейтрон? Это утверждение верно лишь отчасти. Если нейтрон является соединением фотонов и антифотонов, то как быть с массой? В отличие от фотонов частицы, несущие гравитацию (нейтрино и антинейтрино), обладают различными зарядами, но одинаковой массой. Масса может накапливаться, переходить из одних частиц в другие, но не исчезать! То есть должны существовать частицы, компенсирующие массу, – антимассивные частицы. Но кроме этого антимассивные частицы должны компенсировать и знак, ведь нельзя сказать, что нейтрино и антинейтрино должны соответствовать антимассивные им частицы антинейтрино и нейтрино! Пусть это звучит по-другому. Ко всем новым образовавшимся частицам я буду приставлять приставку «ново». Итак, должны образоваться частицы с антимассой новонейтрино и новоантинейтрино.

| n | и | n- | (все частицы с антимассой для удобства я обозначил знаком модуль | |).

Соединение нейтрино и фотона образует электрон, а соединение антинейтрино и фотона образует позитрон. Если существуют такие частицы, как новонейтрино, новоантинейтрино и антифотон, то должны существовать их соединения – новоэлектрон и новопозитрон:

| n | + g = | e– | , | n- | + g = | e+ |.

Для того чтобы быть действительно нейтральным, нейтрон должен иметь в своем составе электроны, позитроны, новоэлектроны и новопозитроны. Но сколько этих частиц он должен содержать?

Чтобы ответить на этот казалось бы неразрешимый вопрос, надо взглянуть на модель идеального атома – атома водорода (рис. 5). В противоположность ему должен существовать антиатом водорода (рис. 6). Ведь в атоме водорода электрон обладает кинетической энергией, а протон – потенциальной. В противоположность ему должен существовать атом водорода с антипротоном в качестве ядра и позитроном на его орбите. В противоположность этим двум атомам должны существовать подобные им атомы с антимассой (рис. 7 и 8). То есть нейтрон должен содержать в своем составе два электрона, два позитрона, два новоэлектрона и два новопозитрона. Схему нейтрона я изобразил на рис. 9.

Почему частицы я расположил так, а не иначе, и почему я вписал их в воображаемый куб? Потому что нейтрон – это нейтральная частица, а значит, частицы, входящие в состав нейтрона, должны составлять нейтральную структуру, главное условие которой гласит: «Энергия одной частицы должна быть скомпенсирована энергией другой частицы». В то же самое время эта структура должна препятствовать естественному распаду нейтрона. Настоящий распад нейтрона не был обнаружен, иначе были бы найдены частицы с антимассой. На рис. 9 прекрасно видно, как частицы с массой соседствуют с частицами с антимассой.

Но как взаимодействуют частицы с массой и антимассой? Притягиваются ли они, как массивные частицы, либо отталкиваются, как однополярные? Ответ только один: «Массивные частицы отталкиваются от антимассивных». Если бы они притягивались, то массивные частицы соединились бы с антимассивными, превратившись в нейтральную массу и разрушив всю космическую картину Вселенной.

То же самое происходит с фотонами и антифотонами – они взаимоотталкиваемы, но когда они оказываются вместе, их электромагнитные заряды нейтрализуются. Электроны притягиваются позитронами, а новоэлектроны притягиваются новопозитронами. При соединении эти частицы должны аннигилировать, но масса отталкивается антимассой, поэтому частицы не могут окончательно соединиться, но и разлететься они не могут, так как удерживаются электромагнитными силами. Из-за равновесия гравитационных и электромагнитных сил нейтрон не распадается и не аннигилирует.

Именно поэтому нейтрон не распадается без применения к нему внешних усилий. Он не распадается даже при появлении протона (соединение позитрона и нейтрона), то есть та энергия, которая разделила нейтрон, должна быть больше той, которая дала жизнь позитрону. Из всего вышесказанного можно сделать вывод: нейтрон – это частица, обладающая огромным потенциалом, в котором вся энергия скомпенсирована; если это масса, то она скомпенсирована антимассой, если это знак, то он скомпенсирован другим знаком, если это электромагнитный заряд, то он скомпенсирован другим электромагнитным зарядом. То есть я утверждаю, что не существует частиц, не обладающих никакой энергией, существует лишь условие, когда эта потенциальная энергия скомпенсирована внутри частицы. Из этого утверждения можно вывести правило, которое будет полностью соответствовать закону сохранения энергии: «Никакая система, тело или частица не может не обладать никакой энергией. Если мы говорим: «Система, тело или частица не обладает энергией», – то подразумеваем, что энергия, которой обладает система, тело или частица уравновешена другой системой, телом или частицей либо энергия которой обладают эти элементы нами не учитывается». То есть электроны, позитроны, новоэлектроны и новопозитроны обладают энергией, но она уравновешена внутри нейтрона.

Но если нейтрон сам по себе нейтрален и уравновешен, то можем ли мы вообще его обнаружить? Если он входит в состав других частиц, то да. А если не входит? Ведь у такого нейтрона нет никаких дефектов (знака, массы, электромагнитного заряда). Нет, такой нейтрон невозможно обнаружить, как невозможно определить массу нейтрино. То есть нейтрон – это частица, которую невозможно увидеть, почувствовать, узнать. То есть вокруг нас существует огромное количество нейтронов, а мы даже не знаем об этом! Что это значит? Это значит, что абсолютный вакуум не так уж и пуст, в нем содержится огромное количество нейтронов (при делении которых образовались все известные элементарные частицы).

Теперь поговорим о тех четырех атомах, которые образовались после деления нейтрона. Ведь в состав ядер этих атомов входят нейтроны. И хотя при делении нейтрона образовались те частицы, которые сформировали четыре атома, четыре нейтрона не могли сформироваться при делении одного – это противоречило бы всем законам физики. Нет, эти четыре нейтрона первоначально входили в состав некой структуры, которая и дала жизнь четырем атомам. Какой бы не была эта структура, она ни чем не будет обнаружена, поэтому эту структуру я назвал «ничто». Ничто должно состоять из пяти нейтронов, при делении одного нейтрона получились: электроны, позитроны, новоэлектроны, новопозитроны, а четыре других нейтрона сформировали ядра четырех атомов. Исходя из схемы нейтрона, пятый разделившийся нейтрон должен находиться на пересечении других нейтронов. Эт

К-во Просмотров: 411
Бесплатно скачать Реферат: Глобальная история Вселенной (физика)