Реферат: Господствующие стили математического мышления
Брауэр: математическое мышление опирается на интуицию (прежде всего интуицию времени, интуицию раздвоения единого). Существуют исходные принципы мышления, но они лишь результат свободного творения математика-индивида. Изначально математическое исследование не зависит ни от языка, ни от логики. Главный метод мышления - интроспекция. Обыденное знание выше формального. Существуют неразрешимые проблемы.
Гильберт: математическое мышление основано на интеллектуальной ясности. До математики мы имеем опытные представления, конкретные объекты. Математика начинается со знаков, обозначающих эти объекты, и с логики, дающей надежные выводы. Математика интерсубъектна (является результатом коллективного творчества) и, вообще говоря, объективна (в платонистском смысле). Формальное знание выше обыденного. Мир познаваем, все математические проблемы в принципе разрешимы.
Проблема реальности и единства мира.
Брауэр: реальность - это сознание индивида, это образы, мыслеформы, восходящие от внутренней сферы к внешнему миру. Это субъективная реальность. Существует ли объективная реальность, единая для всех индивидов, - открытый вопрос.
Гильберт: существует объективная реальность, данная нам наглядно, в качестве чувственных переживаний до какого то ни было мышления. Единство мира проявляется в математике как универсальном языке, раскрывающем сущность мира.
Как мы знаем, в споре не оказалось победителя. Интуиционистская и теоретико-множественная математики дополняют друг друга.
Гильберт и Брауэр работали в различных областях. Гильберт ясен, последователен, логичен. Более склонен к формальному мышлению, что особенно видно на теории доказательств. Он платонист и кантианец. Его стиль можно назвать формально-платонистским. Это господствующий стиль, т.к. абсолютное большинство математиков - платонисты.
Брауэр же пытался оторваться от платонизма, порвать с античной традицией математиков оперировать идеальными объектами подобно материальным предметам. Отсюда впечатление противоречивости. Хотя с точки зрения классически мыслящего ученого он действительно противоречив: работал и теоретико-множественными методами (в топологии), и интуиционистскими, создавая принципиально новую неплатонистскую математику.
Определенными сдвигами в неплатонистском направлении стали также конструктивизм, теория категорий, некоторые теории в логике. Действительно, если радикализировать позицию Брауэра, высказать её ещё яснее убрать из его философско-математических высказываний натуральные числа, то останется только алгоритм. Тогда не важно ЧТО преобразуется, а важно КАК (само преобразование). По идейному подходу это близко к теории алгорифмов, -исчислению А.Черча, теории категорий. В одном из направлений конструктивизма - теории алгорифмов А.А.Маркова (мл.) главное - само преобразование, но алгорифм понимается платонистски. Однако уже -исчисление, метафорически выражаясь, логика без переменных. Теорию категорий Ю.И.Манин назвал социологическим подходом, т.е. это как бы структуры без элементов, на что первым обратил внимание Ф.У.Ловер.
В чём состоит неплатонистский стиль мышления?
в преодолении мышления целостными "недвижными" понятиями, подобными языковым формам или материальным вещам, и утверждении мышления движущимися образами, становящимися мыслеформами, следовательно, переходными, дробными объектами - фракталами; оперирование ими требует и неплатонистской логики - мышления как бы дробными понятиями, суждениями, умозаключениями;
в отказе от классической тройки: элемент, структура, система, и утверждении системы без элементов, но со структурой (законом);
в отказе от субъект-объектного расщепления бытия, признании его ограниченности и в утверждении единого бытия, в котором слиты объект и субъект.
Подобно тому, как в начале ХХ века в естествознании возникла неклассическая наука, а к концу века - постнеклассическая, также возникла неклассическая математика (интуиционизм), а позже стала развиваться постнеклассическая (например, фрактальная геометрия). Их отличие - в сдвиге к картине мира, в которой в математическое знание включён идеальный мыслящий субъект, в отказе от жёсткой структурности (как в теоретико-множественной картине). Есть классы и структура, но нет элементов. Это предполагает предельно высокий уровень абстрактности (отсюда у конкретно мыслящих математиков возникает ощущение пустоты категорных форм).
Неплатонизм предполагает мышление самоподобными объектами - фракталами. Их странность в том, что невозможно выделить части (они совпадают с целым) - у них нет структуры как связи элементов. В то же время есть закон. Например, это формула Б.Мандельброта: Zn+1 = Zn2 + C.
Таким образом, интуиционизм, метаматематика, фрактальная геометрия образуют зачатки неплатонистской математики - области свободно становящихся объектов, относительно которой возникает ощущение, что в ней НЕТ классических (теоретико-множественных) понятий, или их может не быть - они уходят на второй план. В то же время и здесь ЕСТЬ неизменные идеальные объекты, например, алгоритм, фрактал (как формула, организующая его, или соответствующая геометрическая картинка, мыслимая как завершённое целое) - но это при платонистской интерпретации, тогда исчезает специфика неплатонизма, его шарм, брауэровский привкус.
Мы получаем противоположности, отрицающие друг друга (НЕТ и ЕСТЬ) - с точки зрения двузначной логики.
Учёному же, стремящемуся к мудрости (философу), необходимо преодолеть ограниченность двузначности - подняться над противоположностями и, следовательно, искать МЕЖДУ "существует" и "не существует", то есть, в области становления - именно здесь область роста постнеклассической математики.
Эта область заполнена одними лишь монстрами - странными объектами, подобно кентавру совмещающими в себе взаимоисключающие свойства, например, наличие структуры при отсутствии элементов, неподвижность и вечное движение, живость и мертвенность - как фракталы, а также непрерывность при недифференцируемости, конечность площади при бесконечности периметра - как давно открытые некоторые функции и фигуры. Причём исторически первый монстр - это иррациональные числа (VI в. до РХ). В гармонической картине мира древних греков этих чисел как бы нет, и в то же время они налицо - как диагональ квадрата.
На единичном отрезке прямой рациональные числа (вида m/n) образуют множество меры 0 (их почти нет), а иррациональные - меры 1 (это почти все числа). Подобным же образом почти всё, что есть во всей математике как мире всех возможных миров - это монстры, а прекрасные гармоничные непротиворечивые понятия образуют множество меры 0. Это наилучший из всех возможных миров. Это наш мир, поскольку человеческий род в принципе прекрасен и может устойчиво существовать (жить) лишь в окружении прекрасного. Так монадология Лейбница и антропный принцип сходятся в хаосе - промежуточной области вечного становления, между "да" и "нет". Хаос здесь уступает своей творящей стороной.
Таким образом, сравнивая Гильберта и Брауэра, мы видим, что неплатонистский стиль последнего отрицает оперирование "ставшими", неподвижными формами и ведет к математике "абсолютно текучего", в котором нет целых понятий, но (гипотетически) возможны фрактальные - дробные понятия, суждения, умозаключения. Философией, наиболее близкой к такой - синергетической трактовке Брауэра, является даосизм как учение о становящемся, но никогда не ставшем бытии.
Стиль Брауэра (как основателя интуиционизма) можно назвать интуиционистско-неплатонистским, (предшествующим синергетическому стилю мышления). Жизнь=математика=музыка=искусство - все слилось в его противоречивой, мятущейся и мятежной душе отрицателя основ, стремящегося к Единому, понимаемому в духе восточной философии. Известные слова Бюффона "Человек - это стиль" (как в быту, так и в науке) относятся ко всем описанным ученым. В частности, манера поведения, особенности личной жизни Брауэра коррелируют с его поисками неплатонизма в математике.
Подобные пары математиков, дискутировавших или параллельно совершавших одни и те же открытия и отличавшиеся стилями, неоднократно встречаются в истории науки, на что обращает внимание И.М.Яглом 8 . Он обращает внимание на универсальность двух типов мышления: левополушарного и правополушарного, арифметико-алгебраического и геометрического. Именно этим отличаются Пифагор и Фалес (как создатели теоретической математики), Аристотель и Платон (разработчики философии математики, один - создатель логики, второй - его учитель, мысливший яркими картинками), Я.Бойаи и Н.И.Лобачевский (создатели неевклидовых геометрий), Г.Грасман и У.Р.Гамильтон (внешняя алгебра и кватернионы), К.Вейерштрасс и Б.Риман (алгебраическая теория функций и геометрическое направление теории аналитических функций), С.Ли и Ф.Клейн (теория групп) и другие.
Лево- и правополушарный типы мышления обусловлены спецификой физиологии человеческого мозга, лежат в основе и соответствующих стилей. Если согласиться с Бюффоном, что стиль несёт в себе индивидуально-личностный привкус, то:
стиль = тип + индивидуальность.
Таким образом, среди гигантского количества стилей можно выделить главные и классифицировать их по парам противоположностей:
содержательный - формальный (близкое деление: конкретный - абстрактный);
дискретный - непрерывный (близкое деление: арифметико-алгебраический - геометрический);
платонистский - неплатонистский (исторически-преходящее деление: теоретико-множественный - интуиционистский), как мышление дискретными целостными понятиями и мышление переходными, дробными, фрактальными мыслеобразами.
XX век впервые после великих греков через интуиционизм, конструктивизм, метаматематику, теорию категорий, фрактальную геометрию обозначил отход от господствовавшего тысячелетия платонистского стиля.