Реферат: Гравиметрический анализ
Гравиметрический анализ в области содержаний определяемого компонента нескольких десятых процента и больше характеризуется очень высокой точностью. Ориентировочную погрешность гравиметрического метода можно оценить с помощью формулы (2.19). В лабораторных работах по гравиметрическому методу обычно требуется определить массу вещества в пересчете на заданное соединение. Например, при анализе сульфата результат определения часто пересчитывают на содержание SO3 по формуле
ffi(SO3 ) = m(BaSO4 )F,
где m(SO3 ) — масса SO3 ; m(BaSO4 ) — масса прокаленного осадка BaSO4 , остающаяся постоянной при повторном прокаливании, F— фактор пересчета.
Относительная погрешность определения массы SO3 равна относительной погрешности определения массы BaSO4 . Масса гравиметрической формы m(BaSO4 ) получается как разность двух взвешиваний на аналитических весах:
m(BaSO4 ) = т1 - т2 ,
где т1 — суммарная масса тигля и BaSO4 ; m2 — масса пустого тигля.
Погрешность взвешивания примерно одинакова в обоих случаях:
SX =S2 .
В заводских и научно-исследовательских лабораториях нередко требуется определить серу в какой-либо пробе в пересчете на массовую долю (%) SO3 . В ходе анализа серосодержащие соединения окисляют до SO3 ~ и осаждают в виде BaSO4 , который затем взвешивают. Если осаждение BaSO4 производится в аликвоте, результаты такого анализа могут быть рассчитаны по формуле Прокаливание осадка до постоянной массы прекращают, когда два последовательных взвешивания различаются не более чем на 2 • 10~4 г, что характеризует обычную погрешность взвешивания на аналитических весах.
Погрешность рассматриваемого анализа зависит главным образом от относительной погрешности взвешивания прокаленного осадка и от относительной погрешности определения объема пипетки. Следовательно, реального увеличения точности анализа можно добиться уменьшением именно этих погрешностей. В то же время следует отметить, что уменьшение погрешности в массе навески для анализа или объеме мерной колбы не приведет к сколько-либо заметному уменьшению погрешности анализа.
Практическое применение
Гравиметрический анализ — один из наиболее универсальных методов. Он применяется для определения почти любого элемента. В большей части гравиметрических методик используется прямое определение, когда из анализируемой смеси выделяется интересующий компонент, который взвешивается в виде индивидуального соединения. Часть элементов периодической системы (например, соединения щелочных металлов и некоторые другие) нередко анализируется по косвенным методикам. В этом случае сначала выделяют два определенных компонента, переводят их в гравиметрическую форму и взвешивают. Затем одно из соединений или оба переводят в другую гравиметрическую форму и снова взвешивают. Содержание каждого компонента определяют путем несложных расчетов.
Определение воды. Знание влажности пробы необходимо для точного расчета результатов анализа и содержания других компонентов. Помимо этого, вода входит в состав многих соединений в определенных стехиометрических отношениях (в кристаллогидратах). Для определения воды разработаны прямые и косвенные методы.
В косвенных методах воду определяют по уменьшению массы пробы при обезвоживании нагреванием или путем выдерживания в эксикаторе с энергичным водоотнимающим веществом (Р2 О5 , концентрированная H2 SO4 и др.). Метод дает правильные результаты, если при этом в пробе не происходит никаких других процессов, кроме удаления воды, т. е. проба не содержит других летучих веществ.
Для определения влажности пробу обычно выдерживают при температуре 105 или 110°С до постоянной массы. Стехиометрическая или кристаллизационная вода при этом удаляется не всегда, а обезвоживание некоторых веществ, например гидроксидов железа, алюминия и др., требует уже значительно более высокой температуры (700—800°С и выше). При определении влажности органических веществ часто используется нагревание в вакууме при температуре ниже 100 °С.
В прямых методах определения воды водяные пары поглощаются осушителем — специальным веществом, энергично поглощающим влагу (СаС12 , Mg(C104 )2 и др.). Содержание воды определяется по увеличению массы осушителя, конечно, если он не поглощает других веществ, кроме воды.
Определение кремниевой кислоты. Кремниевая кислота или ее соли входят в состав многих горных пород, руд и других объектов. При обработке горных пород или минералов кислотой в осадке остается кремниевая кислота с переменным содержанием воды. Если анализ начинается со сплавления пробы, гидратированная кремниевая кислота образуется при кислотном выщелачивании плава. Большинство элементов при такой обработке образуют растворимые соединения и легко отделяются от осадка фильтрованием. Однако разделение может быть неполным, так как гидратированная кремниевая кислота может частично проходить через фильтр в виде коллоидного раствора. Поэтому перед фильтрованием осадок кремниевой кислоты стремятся полностью дегидратировать выпариванием с хлороводородной кислотой. При прокаливании кремниевая кислота переходит в безводный SiO2 , который является гравиметрической формой. По его массе часто рассчитывают результат анализа. Гидратированный диоксид кремния SiO2 • пН2 О является отличным адсорбентом, поэтому осадок SiO2 оказывается загрязненным адсорбированными примесями. Истинное содержание диоксида кремния определяют путем обработки прокаленного осадка фтороводород-ной кислотой при нагревании, в результате чего образуется летучий SiF4 :
SiO2 +4HF = SiF4 + 2Н2 О
Убыль в массе после обработки осадка фтороводородной кислотой равна содержанию SiO2 в пробе.
Определение железа и алюминия. При анализе силикатов, известняков, некоторых руд и других горных пород эти элементы часто определяют гравиметрическим методом в смеси с титаном, марганцем и фосфатом как сумму так называемых полуторных оксидов. Обычно после отделения кремниевой кислоты в кислом растворе проводят осаждение сульфидов (меди и других элементов) и в фильтрате после удаления сероводорода осаждают сумму полуторных оксидов аммиаком в аммиачном буферном растворе. Осадок гидроксидов промывают декантацией и переосаждают, после чего фильтруют, промывают и прокаливают. Прокаленный осадок содержит оксиды Fe2 O3 , A12 O3 , TiO2 , MnO2 . Иногда анализ на этом заканчивается, так как бывает достаточным определить только сумму оксидов и не требуется устанавливать содержание каждого компонента. При необходимости более-детального анализа прокаленный осадок сплавляют с пиросульфатом калия для перевода оксидов в растворимые сульфаты и после растворения плава определяют в растворе отдельные компоненты — железо титриметрическим или гравиметрическим методом, титан и марганец — фотометрическим и фосфор — гравиметрическим (марганец и фосфор анализируются обычно из отдельной навески). Содержание алюминия рассчитывают по разности. Прямое гравиметрическое определение железа в сумме полуторных оксидов основано на восстановлении Fe(III) сероводородом до Fe(II) и осаждении FeS в аммиачной среде в присутствии винной кислоты как маскирующего агента. Осадок FeS растворяют в НС1, окисляют при нагревании азотной кислотой и осаждают гидроксид железа(Ш) аммиаком. Анализ заканчивают взвешиванием прокаленного Fe2 O3 .
Определение калия и натрия. Гравиметрическое определение щелочных металлов относится к сравнительно сложным анализам главным образом из-за большой растворимости солей этих металлов. Калий и натрий могут быть определены один в присутствии другого, но нередко применяется и косвенный анализ: определяют сумму хлоридов или сульфатов этих металлов, затем содержание одного из них устанавливают экспериментально, а содержание другого рассчитывают по разности. Иногда используют метод определения суммарной массы хлоридов калия и натрия, а затем после обработки H2 SO4 — суммарной массы их сульфатов.
Калий в присутствии натрия может быть осажден в виде K2 PtCl6 или КСЮ4 . В настоящее время соединения платины для этой цели почти не применяют в связи с их большой стоимостью. Растворимость перхлората калия в воде резко уменьшается в присутствии органических жидкостей. На практике часто используют осаждение КСЮ4 в присутствии смеси равных частей к-бутилового спирта и этилацетата. Гравиметрической формой является КСЮ4 , высушенный при 350 °С. Натрий в присутствии калия осаждается цинкуранилацетатом как тройной ацетат состава CH3 COONa • (CH3 COO)2 Zn • 3(CH3 COO)2 UO2 , и это же соединение в виде воздушно-сухого осадка является гравиметрической формой.
Определение органических соединений. В гравиметрическом анализе органических соединений используется способность некоторых реагентов вступать во взаимодействие с функциональными группами (карбонильной, азо-, сульфо- и т. д.). Таким образом, становится возможным анализировать целый класс веществ, имеющих данную атомную группу. Например, соединения, содержащие метоксигруппу, определяются по схеме:
ROCH3 + HI = ROH + CH3 ICH3 I + Ag+ + H2 O = Agl + CH3 OH + H+
Результат анализа рассчитывается по массе гравиметрической формы Agl.
Осадок тетраиодфениленхинона высушивают и взвешивают.
В последнее время успешно развивается гравиметрический анализ органических соединений.
Общая оценка метода
Наиболее существенным достоинством гравиметрического метода является высокая точность анализа. Обычная погрешность гравиметрического определения составляет 0,1—0,2%. При анализе пробы сложного состава погрешность возрастает до нескольких процентов за счет несовершенства методов разделения и выделения анализируемого компонента. К числу достоинств гравиметрического метода относится также отсутствие каких-либо стандартизации или градуировок по стандартным образцам, необходимых почти в любом другом аналитическом методе. Для расчета результатов гравиметрического анализа требуется знание лишь молярных масс и стехиометрических соотношений.
Селективность гравиметрического анализа невысока в связи с отсутствием соответствующих реагентов на большинство ионов. Одним из наиболее селективных является гравиметрическое определение никеля в виде диметилглиоксима, но такие примеры единичны и гравиметрические методы, как правило, требуют предварительного химического разделения с целью выделения анализируемого компонента.
Существенным недостатком гравиметрического метода является длительность определений. Это практически исключает применение гравиметрического анализа, например, для текущего технологического контроля производства и там, где быстрота выполнения анализа имеет решающее значение.