Реферат: Гравиметрический анализ
Гравиметрический анализ основан на определении массы вещества.
В ходе гравиметрического анализа определяемое вещество или отгоняется в виде какого-либо летучего соединения (метод отгонки), или осаждается из раствора в виде малорастворимого соединения (метод осаждения). Методом отгонки определяют, например, содержание кристаллизационной воды в кристаллогидратах, если вещество при нагревании не претерпевает других химических изменений, кроме выделения воды:
ВаС12 • 2Н2 О (к) = ВаС12 (к) + 2Н2 О (г)
Убыль массы исходной навески равна содержанию воды.
Для определения содержания SiO2 часто используют реакцию с фтороводородной (плавиковой) кислотой, в результате которой образуется летучий SiF4 :
SiO2 + 4HF = SiF4 + 2Н2 О
Метод отгонки применяют также при анализе карбонатов, некоторых нитратов и других соединений, образующих летучие продукты реакции. Содержание анализируемого компонента определяют по уменьшению массы вещества в результате термической обработки или по увеличению массы поглотителя газообразных продуктов реакции.
Методы осаждения применяются более широко, и их практическое значение намного больше, чем методов отгонки.
Рассмотрим методы осаждения более подробно. Вслед за растворением пробы или получением анализируемого раствора выполняются следующие операции (имеется в виду, что осаждается лишь один определяемый компонент):
1) осаждение;
2) фильтрование и промывание осадка;
3) высушивание или прокаливание осадка;
4) взвешивание;
5) расчет результата анализа.
Практическое проведение каждой из этих операций основано на достаточно разработанных теоретических представлениях и многолетнем опыте химиков-аналитиков.
Расчеты в гравиметрическом анализе
Если т — масса гравиметрической формы, например BaSO4 , а в результате анализа требуется определить массу серы S, то результат можно рассчитать по простой пропорции. Обозначим молярную массу BaSO4 как М (BaSO4 ), молярную массу S как М (S). Составим пропорцию:
Отношение молярной массы определяемого компонента к молярной массе гравиметрической формы называют фактором пересчета, или гравиметрическим фактором (множителем), или просто фактором и обозначают буквой F.
z = mF.
Гравиметрический фактор показывает массу определяемого вещества, которое соответствует 1 г гравиметрической формы.
Дифференцирование уравнения и переход к конечным приращениям дает:
dX= dmF+ mdF;
АХ = AmF + mAF.
Последнее соотношение показывает, что чем меньше фактор пересчета F, тем меньше погрешность определяемой величины АХ при одной и той же погрешности взвешивания Am. (Погрешность фактора AFпренебрежимо мала, и с ней можно не считаться.) Это, в сущности, вторая формулировка требования большой молярной массы гравиметрической формы.
При вычислении гравиметрического фактора необходимо учитывать стехиометрические коэффициенты в химических формулах определяемого вещества и гравиметрической формы, с тем, чтобы число атомов определяемого компонента в числителе и знаменателе дроби было одинаковым:
Несколько более сложные соотношения получаются при расчете, например, содержания Fe3 O4 , если гравиметрической формой является Fe2 O3 . В этом случае пропорция имеет вид
гМ (Fe2 O3 ) - 1М (Fe3 O4 )
Определяемое вещество может и не входить в состав гравиметрической формы. Например, содержание железа (Ш) в растворе сульфата железа Fe2 (SO4 )3 можно определить по массе осадка BaSO4 , полученного из этого раствора. Один моль Fe2 (SO4 )3 содержит 2 моль Fe3+ и 3 моль SOf , поэтому фактор пересчета рассчитывается по следующей пропорции:
2М (Fe) - ЗМ (BaSO4 ) = 2 M(Fe)
F - 1 3M(BaSO4 )'
--> ЧИТАТЬ ПОЛНОСТЬЮ <--