Реферат: Явление сверхпроводимости

Явление сверхпроводимости при криогенных температурах достаточно широко распространено в природе. Сверхпроводимостью обладают 26 металлов. Большинство из них являются сверхпроводниками I рода с критическими температурами перехода ниже 4,2 К. В этом заключается одна из причин того, что большинство сверхпроводящих металлов для электротехнических целей применить не удается. Еще 13 элементов проявляют сверхпроводящие свойства при высоких давлениях. Среди них такие полупроводники, как кремний, германий, селен, теллур, сурьма и др. Следует заметить, Чт о сверхпроводимостью не обладают металлы, являющиеся наилучшими проводниками в нормальных условиях. К ним относятся золото, медь, серебро. Малое сопротивление этих материалов указывает на слабое взаимодействие электронов с решеткой. Такое слабое взаимодействие не создает вблизи абсолютного нуля достаточного межэлектронного притяжения, способного преодолеть кулоновское отталкивание. Поэтому и не происходит их переход в сверхпроводящее состояние. Кроме чистых металлов сверхпроводимостью обладают многие ть терметаллические соединения и сплавы. Общее количество наименований известных в настоящее время сверхпроводников составляет около 2000. Среди них самыми высокими критическими параметрами обладают сплавы и соединения ниобия (табл. 3.1). Некоторые из них позволяют использовать для достижения сверхпроводящего состояния вместо жидкого гелия более дешевый хладагент — жидкий водород.

Все интерметаллические соединения и сплавы относятся к сверхпроводникам II рода. Однако деление веществ по их сверхпроводящим свойствам на два вида не является, абсолютным. Любой сверхпроводник I рода можно превратить в сверхпроводник II рода, если создать в нем достаточную концентрацию дефектов кристаллической решетки. Например, у чистого олова 7\.в = 3,7 К, но если вызвать в олове резко неоднородную механическую деформацию, то критическая температура возрастет до 9 К, а критическая напряженность магнитного поля увеличится в 70 раз.

Сверхпроводимость никогда не наблюдается в системах, в которых существует ферро- или антиферромагнетизм. Образованию сверхпроводящего состояния в полупроводниках и диэлектриках препятствует малая концентрация свободных электронов. Однако в материалах с1 большой диэлектрической проницаемостью силы кулоновского оттал-1 кивания между электронами в значительной мере ослаблены. Поэтому некоторые из них также проявляют свойства сверхпроводников при низких температурах. Примером может служить титанат стронция (SrTiO3 ), относящийся к группе сегнетоэлектриков. Ряд полупроводников удается перевести в сверхпроводящее состояние добавкой большой концентрации легирующих примесей {GeTe, SnTe, CuS и др.)

В настоящее время промышленность выпускает широкий ассортимент сверхпроводящих проволок и лент для самых различных целей. Изготовление таких проводников связано с большими технологическими трудностями. Они обусловлены плохими механическими свойствами многих сверхпроводников, их низкой теплопроводностью и сложной структурой проводов. Особенно большой хрупкостью отличаются интерметаллические соединения с высокими критическими параметрами, этому вместо простых проволок и лент приходится создавать композиции из двух (обычно сверхпроводник с медью) и даже нескольких металлов. Для получения многожильных проводов из хрупких интерметаллидов особенно перспективен бронзовый метод (или метод твердофазной диффузии), освоенный промышленностью. По этому методу прессованием и волочением создается композиция из тонких нитей ниобия в матрице из оловянной бронзы. При нагреве олово из бронзы диффундирует в ниобий, образуя на его поверхности тонкую сверхпроводящую пленку станнида ниобия Nb3 Sn. Такой жгут может изгибаться, но пленки остаются целыми.

Применение

Керамические сверхпроводники весьма перспективны в плане крупномасштабных применений, главным образом по той причине, что их можно изучать и использовать при охлаждении сравнительно недорогим жидким азотом.

Лабораторные применения

Первым промышленным применением сверхпроводимости было создание сверхпроводящих магнитов с высокими критическими полями. Доступные сверхпроводящие магниты позволили получить к середине 1960-х годов магнитные поля выше 100 кГс даже в небольших лабораториях. Ранее создание таких полей с помощью обычных электромагнитов требовало очень больших количеств электроэнергии для поддержания электрического тока в обмотках и огромного количества воды для их охлаждения.

Следующее практическое применение сверхпроводимости относится к технике чувствительных электронных приборов. Экспериментальные образцы приборов с контактом Джозефсона могут обнаруживать напряжения порядка 10–15 Вт. Магнитометры, способные обнаруживать магнитные поля порядка 10–9 Гс, используются при изучении магнитных материалов, а также в медицинских магнитокардиографах. Чрезвычайно чувствительные детекторы вариаций силы тяжести могут применяться в различных областях геофизики.

Техника сверхпроводимости и особенно контакты Джозефсона оказывают все большее влияние на метрологию. С помощью джозефсоновских контактов создан стандарт 1 В. Был разработан также первичный термометр для криогенной области, в которой резкие переходы в некоторых веществах используются для получения реперных (постоянных) точек температуры. Новая техника используется в компараторах тока, для измерений радиочастотной мощности и коэффициента поглощения, а также для измерений частоты. Она применяется также в фундаментальных исследованиях, таких, как измерение дробных зарядов атомных частиц и проверка теории относительности.

Сверхпроводимость будет широко использоваться в компьютерных технологиях. Здесь сверхпроводящие элементы могут обеспечивать очень малые времена переключения, ничтожные потери мощности при использовании тонкопленочных элементов и большие объемные плотности монтажа схем. Разрабатываются опытные образцы тонкопленочных джозефсоновских контактов в схемах, содержащих сотни логических элементов и элементов памяти.

Промышленные применения.

Наиболее интересные возможные промышленные применения сверхпроводимости связаны с генерированием, передачей и использованием электроэнергии. Например, по сверхпроводящему кабелю диаметром несколько дюймов можно передавать столько же электроэнергии, как и по огромной сети ЛЭП, причем с очень малыми потерями или вообще без них. Стоимость изготовления изоляции и охлаждения криопроводников должна компенсироваться эффективностью передачи энергии. С появлением керамических сверхпроводников, охлаждаемых жидким азотом, передача электроэнергии с применением сверхпроводников становится экономически очень привлекательной.

Еще одно возможное применение сверхпроводников – в мощных генераторах тока и электродвигателях малых размеров. Обмотки из сверхпроводящих материалов могли бы создавать огромные магнитные поля в генераторах и электродвигателях, благодаря чему они были бы значительно более мощными, чем обычные машины. Опытные образцы давно уже созданы, а керамические сверхпроводники могли бы сделать такие машины достаточно экономичными. Рассматриваются также возможности применения сверхпроводящих магнитов для аккумулирования электроэнергии, в магнитной гидродинамике и для производства термоядерной энергии.

Инженеры давно уже задумывались о том, как можно было бы использовать огромные магнитные поля, создаваемые с помощью сверхпроводников, для магнитной подвески поезда (магнитной левитации). За счет сил взаимного отталкивания между движущимся магнитом и током, индуцируемым в направляющем проводнике, поезд двигался бы плавно, без шума и трения и был бы способен развивать очень большие скорости. Экспериментальные поезда на магнитной подвеске в Японии и Германии достигли скоростей, близких к 300 км/ч.

К-во Просмотров: 291
Бесплатно скачать Реферат: Явление сверхпроводимости