Реферат: Индикаторы

9. Изменение окраски вещества при пропускании через него электрического тока (электрохромные индика-торы).

10. Электрооптические явления в сегнетоэлектриках, обладающих эффектом двойного лучепреломления (сегнетоэлектрические индикаторы).

11. Гальваническое осаждение и растворение тонкопленочных металлических рисунков (электролитические индикаторы).

12. Перемещение заряженных коллоидных частиц под действием постоянного электрического поля (элек-трофоретические индикаторы).

13. Разнообразные обратимые электро- и фотохимические процессы (электрохимические индикаторы).

14. Измөнение оптических свойств вещества при переходе из жидкой фазы в парообразную при нагрөве электрическим током (парожидкостные индикаторы).

Солоставление этих эффектов позволяет сделать ряд обобщенйй:

— все виды индикаторов можно подразделить на индикаторы с активным и пассивным растрами. К первой группе относятся приборы на основе светогенерациоиных эффектов (1—7), приборы второй группы требуют внешней подоветки (8—14);

— в светогенерационных индикаторах выделяются приборы с прямым (2, 3, 4, 6) и двухступенчатым (1, 5, 7) преобразованием электрической энергии в световую;

- индикаторы с пассивным растром могут быть основаны на измөнении коэффициентов отражения (8, 11, 12, 13. 14), пропускания (8, 12, 13), поглощения (9, 13) света и на вращении плоскоста поляризации (8, 10);

— управлевие индикаторами может осуществляться электрическим током (1, 4, 5, 6, 14), напряжением (2, 3,

6, 7, 8, 10, 12), зарядом (9, 11);

— в качестве активных сред в индикаторах выступают металлы (1, 11), монокристаллы (4, 5), твердые по-ликристаллические вещества (6, 9, 10), порошки (3, 7), жидкости (8, 12), газы (2, 14);

—наиболыпее распространение получили полупроводниковые, газоразрядные и жидкокристаллические ин-дикаторы.

3. «ТРИ КИТА» ИНДИКАТОРНОЙ ТЕХНИКИ

3.1 Полупроводниковые индикаторы (ППИ) примечательны прежде всего тем, что могут перекрыть весь видимый диапазон спектра (рис. 3.4). Яркое и чистое свечение, удобство управлеиия, экономичность, технологичность, долговечность открывают перед этими приборами безграничные перспективы.

Исторически освоение цветовой гаммы идет справа налево: от красного, через оранжевый и желтый к зеле-ному. Это было связано со значительными успехами в области технологии синтеза GaAsP и GaP. Наиболь-шие принципиальные трудности вызывает получение синего света, однако следует заметить, что когда эти трудности будут преодолены, то такой материал, как GaN,

может оказаться одним из самых дешевых, так как выращивается в виде тонких пленок на сапфировых под-ложках. Решение проблемы эффективного синего излучателя откроет путь для создания единой технологии индикаторов всех цветов, основанной на преобразовании этого излучения в более длинноволновое с использовани-ем подходящих фотолюминофоров.

В полупроводниковых индикаторах используются две основные конфигурации высвечиваемых элементов:

— семисегментная (рис. 3.5,а), позволяющая воопроизводить все дөсять цифр и несколько букв (цифровой индикатор);

— матричная (рис. 35,6) с числом точөк 36 (7x5+1), воспроиэводящая все цифры, буквы и знаки стан-дартного кода для обмөна информацией (универсальный цифро-буквенный индикатор).

Для малых по размеру индикаторов используется монолитная конструкция, для больших — в целях экономии дорогостоящих материалов — гибридная, т. е. наборная из отдельных кристаллов. Высокая яркость свечения светодиодоа позволяет использовать различные способы увеличения изображевия. Кроме простейшего линзового увеличения (8 на рис. 1.8,6) достаточно широко используются «псевдосветоводные» конструкции (рис. 3.6). Здесь кристалл помещөн в основании конически расширяющейся прорези в пластмассовой пластине. Иногда внутренние стенки такого световода металлизируют, а сверху помещают пластмассовую линзорастровую пластину, «выравнивающую» яркость свечения по площади прорези. Такая конструкция позволяет получать светящиеся площадки, на порядок превышающие площадь кристалла. Основная масса полупроводниковых индикаторов имеет малые размеры знаков (Н=3 ... 7,5 мм), использование оптического увеличения позволяет продвинуться до Н = 12,5 ... 17,5 мм, в наборных конструкциях реализуют Н = 25 ... 50 мм, что позволяет считывать информацию с расстояния 10 ... 15 м.

Для удобства применения изготавливаются многоразрядные индикаторы (три, четыре, шесть, девять и т. д. знаков в одном корпусе), иногда в тот же корпус помещается и монолитная схема управления (дешифратор-формирователь).

Важной и сложной является задача получения приборов с перестройкой цвета свечения. Простейшее реше-ние — помещение нескольких разных кристаллов в один корпус — для индикаторов не подходит. Могут использоваться (GaP-светодиоды, легированные одновременно азотом, кислородом и цинком, у которых при повышении инжекционного тока последовательно наблюдается красное, желтое, зеленое свечение. Однако цветовая насыщенность таких приборов невысока. Более перспективными представляются структуры с двумя p—n - переходами и с общей базовой областью.

Усложнение светоизлучающего элемента позволяет расширить его функциональные возможности и в схемо-техническом плане. Так, в GaP- структуре типа р+ —n—і—n+ фоточувствительная і - область образует внутреннюю положительную обратную связь, поэтому такой светодиод имеет динисторную вольт-амперную характеристику, т. е. обладает «памятью».

Прогресс физики и технологии светоизлучающих диодов позволяет перейти к созданию монолитных много-элементных матриц: вполне достижимо получение 103 ... 104 светящихся точек (т. е. 30 ... 300 знаков) на одном кристалле площадью 1,5 ... 15 см2. Такие матрицы явятся элементарной ячейкой наборного полупроводникового экрана, для технической реализации которого необходимо решение проблем многоуровневой коммутации, отвода тепла, схем управления. При использовании элементов, обладающих памятью и перестройкой цвета, могут быть созданы достаточно экономичные, малогабаритные, многоцветные экраны индивидуального использования с объөмом одновременно отображаемой информа-ции, эквивалентной 0,3—0,5 стр. машинописного текста.

3.2 Жидкокристаллические индикаторы (ЖКИ) относятся к «молодым» и бурно прогрессирующим оптоэлектронным прибором. Жидкокристаллическое состояние вещества характеризуется одновременным сочетанием свойств жидкости (текучесть) и кристалла (оптическая анизотропия). Такое состояние может обнаруживаться в некотором температурном интервале между точкой кристаллизации Тк и точкой превращения вещества в однородную прозрачную жидкость Тж . Имеется несколько структурных разновидностей жидких кристаллов (ЖК); для индикаторных приборов используются нематические ЖК, характеризующиеся следующими основными особенностями:

К-во Просмотров: 1680
Бесплатно скачать Реферат: Индикаторы